A053004 Decimal expansion of AGM(1,sqrt(2)).
1, 1, 9, 8, 1, 4, 0, 2, 3, 4, 7, 3, 5, 5, 9, 2, 2, 0, 7, 4, 3, 9, 9, 2, 2, 4, 9, 2, 2, 8, 0, 3, 2, 3, 8, 7, 8, 2, 2, 7, 2, 1, 2, 6, 6, 3, 2, 1, 5, 6, 5, 1, 5, 5, 8, 2, 6, 3, 6, 7, 4, 9, 5, 2, 9, 4, 6, 4, 0, 5, 2, 1, 4, 1, 4, 3, 9, 1, 5, 6, 7, 0, 8, 3, 5, 8, 8, 5, 5, 5, 6, 4, 8, 9, 7, 9, 3, 3, 8, 9, 3, 7, 5, 9, 0
Offset: 1
Examples
1.19814023473559220743992249228...
References
- George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 420.
- J. R. Goldman, The Queen of Mathematics, 1998, p. 92.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Gauss's Constant.
- Index entries for transcendental numbers.
Programs
-
Maple
evalf(GaussAGM(1, sqrt(2)), 144); # Alois P. Heinz, Jul 05 2023
-
Mathematica
RealDigits[ N[ ArithmeticGeometricMean[1, Sqrt[2]], 105]][[1]] (* Jean-François Alcover, Jan 30 2012 *) RealDigits[N[(1+Sqrt[2])Pi/(4EllipticK[17-12Sqrt[2]]), 105]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
-
PARI
default(realprecision, 20080); x=agm(1, sqrt(2)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b053004.txt", n, " ", d)) \\ Harry J. Smith, Apr 20 2009
-
PARI
2*real(agm(1, I)/(1+I)) \\ Michel Marcus, Jul 26 2018
-
Python
from mpmath import mp, agm, sqrt mp.dps=106 print([int(z) for z in list(str(agm(1, sqrt(2))).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 11 2017
Formula
Equals Pi/(2*A085565). - Nathaniel Johnston, May 26 2011
Equals Integral_{x=0..Pi/2} sqrt(sin(x)) or Integral_{x=0..1} sqrt(x/(1-x^2)). - Jean-François Alcover, Apr 29 2013 [cf. Boros & Moll p. 195]
Equals Product_{n>=1} (1+1/A033566(n)) and also 2*AGM(1, i)/(1+i) where i is the imaginary unit. - Dimitris Valianatos, Oct 03 2016
Conjecturally equals 1/( Sum_{n = -infinity..infinity} exp(-Pi*(n+1/2)^2 ) )^2. Cf. A096427. - Peter Bala, Jun 10 2019
From Amiram Eldar, Aug 26 2020: (Start)
Equals 2 * A076390.
Equals Integral_{x=0..Pi} sin(x)^2/sqrt(1 + sin(x)^2) dx. (End)
Equals sqrt(2/Pi)*Gamma(3/4)^2 = Integral_{x = 0..1} 1/(1 - x^2)^(1/4) dx = Pi/Integral_{x = 0..1} 1/(1 - x^2)^(3/4) dx. - Peter Bala, Jan 05 2022
From Peter Bala, Mar 02 2022: (Start)
Equals 2*Integral_{x = 0..1} x^2/sqrt(1 - x^4) dx.
Equals 1 - Integral_{x = 0..1} (sqrt(1 - x^4) - 1)/x^2 dx.
Equals hypergeom([-1/2, -1/4], [3/4], 1) = 1 + Sum_{n >= 0} 1/(4*n + 3)*Catalan(n)*(1/2^(2*n+1)). Cf. A096427. (End)
Extensions
More terms from James Sellers, Feb 22 2000
Comments