A033996 8 times triangular numbers: a(n) = 4*n*(n+1).
0, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280
Offset: 0
Examples
Spiral with 0, 8, 24, 48, ... along lower right diagonal: . 36--37--38--39--40--41--42 | | 35 16--17--18--19--20 43 | | | | 34 15 4---5---6 21 44 | | | | | | 33 14 3 0 7 22 45 | | | | \ | | | 32 13 2---1 8 23 46 | | | \ | | 31 12--11--10---9 24 47 | | \ | 30--29--28--27--26--25 48 \ [Reformatted by _Jon E. Schoenfield_, Dec 25 2016]
References
- Stuart M. Ellerstein, J. Recreational Math. 29 (3) 188, 1998.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10, 2016, 884-892.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Leo Tavares, Illustration: Centroid Diamonds.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Knight Graph.
- Stephen Wolfram, A New Kind of Science
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata.
- Index to Elementary Cellular Automata.
Crossrefs
Cf. A000217, A016754, A002378, A024966, A027468, A028895, A028896, A045943, A046092, A049598, A088538, A124080, A008590 (first differences), A130809 (partial sums).
Sequences from spirals: A001107, A002939, A002943, A007742, A033951, A033952, A033953, A033954, A033988, A033989, A033990, A033991, A033996. - Omar E. Pol, Dec 12 2008
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Programs
-
Magma
[ 4*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
seq(8*binomial(n+1, 2), n=0..46); # Zerinvary Lajos, Nov 24 2006 [seq((2*n+1)^2-1, n=0..46)];
-
Mathematica
Table[(2n - 1)^2 - 1, {n, 50}] (* Alonso del Arte, Mar 31 2013 *)
-
PARI
nsqm1(n) = { forstep(x=1,n,2, y = x*x-1; print1(y, ", ") ) }
Formula
a(n) = 4*n^2 + 4*n = (2*n+1)^2 - 1.
G.f.: 8*x/(1-x)^3.
a(n) = 8*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 8*n (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Mar 25 2015
a(n) - a(n-1) = A008590(n), n > 0. - Altug Alkan, Sep 26 2015
From Ilya Gutkovskiy, May 19 2016: (Start)
E.g.f.: 4*x*(2 + x)*exp(x).
Sum_{n>=1} 1/a(n) = 1/4. (End)
Product_{n>=1} a(n)/A016754(n) = Pi/4. - Daniel Suteu, Dec 25 2016
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^2. - Seiichi Manyama, Dec 23 2018
a(n)*a(n+k) + 4*k^2 = m^2 where m = (a(n) + a(n+k))/2 - 2*k^2; for k=1, m = 4*n^2 + 8*n + 2 = A060626(n). - Ezhilarasu Velayutham, May 22 2019
Sum_{n>=1} (-1)^n/a(n) = 1/4 - log(2)/2. - Vaclav Kotesovec, Dec 21 2020
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(4/Pi)*cos(Pi/sqrt(2)).
Product_{n>=1} (1 + 1/a(n)) = 4/Pi (A088538). (End)
Comments