cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A034474 a(n) = 5^n + 1.

Original entry on oeis.org

2, 6, 26, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 48828126, 244140626, 1220703126, 6103515626, 30517578126, 152587890626, 762939453126, 3814697265626, 19073486328126, 95367431640626, 476837158203126
Offset: 0

Views

Author

Keywords

Comments

a(n) is the deficiency of 3*5^n (see A033879). - Patrick J. McNab, May 28 2017

Examples

			G.f. = 2 + 6*x + 26*x^2 + 126*x^3 + 626*x^4 + 3126*x^5 + 15626*x^6 + ...
		

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) - 4 with a(0) = 2.
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1.
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-5*x) = (2-6*x)/((1-x)*(1-5*x)).
E.g.f.: exp(x) + exp(5*x). (End)
a(n) = A279396(n+5,5). - Wolfdieter Lang, Jan 10 2017
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = A000351(n) + 1.
a(n) = 2*A034478(n). (End)

A050621 Smallest n-digit number divisible by 2^n.

Original entry on oeis.org

2, 12, 104, 1008, 10016, 100032, 1000064, 10000128, 100000256, 1000000512, 10000001024, 100000002048, 1000000004096, 10000000008192, 100000000016384, 1000000000032768, 10000000000065536, 100000000000131072
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Comments

Quotients arising from this sequence give A034478 ((5^(n-1)+1)/2).

Crossrefs

Programs

Formula

a(n) = 10^(n-1) + 2^(n-1).
G.f.: Q(0) where Q(k)= 1 + 5^k/(1 - 2*x/(2*x + 5^k/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
G.f.: 2*x*(1-6*x)/((1-2*x)*(1-10*x)). - Vincenzo Librandi, Sep 12 2014
a(n) = 12*a(n-1) - 20*a(n-2) for n>1. - Vincenzo Librandi, Sep 12 2014

A113405 Expansion of x^3/(1 - 2*x + x^3 - 2*x^4) = x^3/( (1-2*x)*(1+x)*(1-x+x^2) ).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 14, 28, 57, 114, 228, 455, 910, 1820, 3641, 7282, 14564, 29127, 58254, 116508, 233017, 466034, 932068, 1864135, 3728270, 7456540, 14913081, 29826162, 59652324, 119304647, 238609294, 477218588, 954437177, 1908874354, 3817748708
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

A transform of the Jacobsthal numbers. A059633 is the equivalent transform of the Fibonacci numbers.
Paul Curtz, Aug 05 2007, observes that the inverse binomial transform of 0,0,0,1,2,4,7,14,28,57,114,228,455,910,1820,... gives the same sequence up to signs. That is, the extended sequence is an eigensequence for the inverse binomial transform (an autosequence).
The round() function enables the closed (non-recurrence) formula to take a very simple form: see Formula section. This can be generalized without loss of simplicity to a(n) = round(b^n/c), where b and c are very small, incommensurate integers (c may also be an integer fraction). Particular choices of small integers for b and c produce a number of well-known sequences which are usually defined by a recurrence - see Cross Reference. - Ross Drewe, Sep 03 2009

Crossrefs

From Ross Drewe, Sep 03 2009: (Start)
Other sequences a(n) = round(b^n / c), where b and c are very small integers:
A001045 b = 2; c = 3
A007910 b = 2; c = 5
A016029 b = 2; c = 5/3
A077947 b = 2; c = 7
abs(A078043) b = 2; c = 7/3
A007051 b = 3; c = 2
A015518 b = 3; c = 4
A034478 b = 5; c = 2
A003463 b = 5; c = 4
A015531 b = 5; c = 6
(End)

Programs

  • Magma
    [Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A010892 := proc(n) op((n mod 6)+1,[1,1,0,-1,-1,0]) ; end proc:
    A113405 := proc(n) (2^n-(-1)^n)/9 -A010892(n-1)/3; end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    CoefficientList[Series[x^3/(1-2x+x^3-2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05 2011
    
  • Python
    def A113405(n): return ((1<Chai Wah Wu, Apr 17 2025

Formula

a(n) = 2a(n-1) - a(n-3) + 2a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001045(k).
a(n) = Sum_{k=0..n} binomial((n+k)/2,k)*A001045((n-k)/2)*(1+(-1)^(n-k))/2.
a(3n) = A015565(n), a(3n+1) = 2*A015565(n), a(3n+2) = 4*A015565(n). - Paul Curtz, Nov 30 2007
From Paul Curtz, Dec 16 2007: (Start)
a(n+1) - 2a(n) = A131531(n).
a(n) + a(n+3) = 2^n. (End)
a(n) = round(2^n/9). - Ross Drewe, Sep 03 2009
9*a(n) = 2^n + (-1)^n - 3*A010892(n). - R. J. Mathar, Mar 24 2018

Extensions

Edited by N. J. A. Sloane, Dec 13 2007

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A020699 Expansion of (1-3*x)/(1-5*x).

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 6250, 31250, 156250, 781250, 3906250, 19531250, 97656250, 488281250, 2441406250, 12207031250, 61035156250, 305175781250, 1525878906250, 7629394531250, 38146972656250, 190734863281250, 953674316406250
Offset: 0

Keywords

Comments

Partial sums are A034478.
Except for the first two terms 1 and 2, these are the integers that satisfy phi(n) = 2*n/5. - Michel Marcus, Jul 14 2015
For n>=1, period of powers of 4 mod 10^n. See A000302. - Martin Renner, Jun 12 2020

Crossrefs

Programs

  • Maple
    seq(`if`(n=0,1,2*5^(n-1)), n=0..22); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    CoefficientList[Series[(1 - 3 x)/(1 - 5 x), {x, 0, 22}], x] (* Michael De Vlieger, Jul 14 2015 *)
  • PARI
    Vec((1-3*x)/(1-5*x) + O(x^30)) \\ Michel Marcus, Jul 14 2015

Formula

a(n) = 2*5^(n-1) for n>0.
E.g.f.: (2*exp(5*x)+3)/5; a(n)=(2*5^n+3*0^n)/5. - Paul Barry, Sep 03 2003
a(n) = sum{k=0..n, C(n-1, k)*(Jac(2n-2k)+Jac(2n-2k-1))}+0^n/2, where Jac(n)=A001045(n). - Paul Barry, Jun 07 2005
a(0)=1, a(1)=2, a(n) = 5*a(n-1) for n>=2. [Vincenzo Librandi, Jan 01 2011]
a(n) = A020729(n-1), n>0. - R. J. Mathar, Sep 16 2016

A083075 Square array read by antidiagonals: T(n,k) = (k*(2*k+3)^n + 1)/(k+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 33, 63, 1, 1, 9, 61, 229, 313, 1, 1, 11, 97, 547, 1601, 1563, 1, 1, 13, 141, 1065, 4921, 11205, 7813, 1, 1, 15, 193, 1831, 11713, 44287, 78433, 39063, 1, 1, 17, 253, 2893, 23801, 128841, 398581, 549029, 195313, 1, 1, 19, 321
Offset: 0

Author

Paul Barry, Apr 23 2003

Keywords

Examples

			Array begins:
  1     1     1     1     1 ...
  1     3    13    63   313 ...
  1     5    33   229  1601 ...
  1     7    61   547  4921 ...
  1     9    97  1065 11713 ...
  ...
		

Crossrefs

Columns include odds, A082109, A083079.
Diagonals include A083079, A083080, A083081, A083082.

Programs

  • Maple
    T := proc(n,k) return (k*(2*k+3)^n+1)/(k+1): end: seq(seq(T(k,n-k),k=0..n),n=0..10); # Nathaniel Johnston, Jun 26 2011

A083076 Third row of number array A083075.

Original entry on oeis.org

1, 5, 33, 229, 1601, 11205, 78433, 549029, 3843201, 26902405, 188316833, 1318217829, 9227524801, 64592673605, 452148715233, 3165041006629, 22155287046401, 155087009324805, 1085609065273633, 7599263456915429, 53194844198408001
Offset: 0

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A067411. Inverse binomial transform of A082412.
Trinomial transform of Jacobsthal numbers A001045. - Paul Barry, Sep 10 2007

Crossrefs

Programs

Formula

a(n) = (2*7^n + 1)/3.
G.f.: (1-3*x)/((1-x)*(1-7*x)).
E.g.f.: (2*exp(7*x) + exp(x))/3.
a(n) = Sum_{k=0..2*n} trinomial(n,k)*Fibonacci(k+1), where trinomial(n,k) are the trinomial coefficients (A027907). - Paul Barry, Sep 10 2007
a(n) = 7*a(n-1) - 2, a(n) = 8*a(n-1) - 7*a(n-2). - Vincenzo Librandi, Nov 06 2011

A081335 a(n) = (6^n + 2^n)/2.

Original entry on oeis.org

1, 4, 20, 112, 656, 3904, 23360, 140032, 839936, 5039104, 30233600, 181399552, 1088393216, 6530351104, 39182090240, 235092508672, 1410554986496, 8463329787904, 50779978465280, 304679870267392, 1828079220555776
Offset: 0

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A034478. 4th binomial transform of (1, 0, 4, 0, 16, 0, 64, ...).
Case k=4 of the family of recurrences a(n) = 2*k*a(n-1) - (k^2-4)*a(n-2), a(0)=1, a(1)=k.

Crossrefs

Cf. A081336.

Programs

Formula

a(n) = 8*a(n-1) - 12*a(n-2), a(0)=1, a(1)=4.
G.f.: (1-4*x)/((1-2*x)*(1-6*x)).
E.g.f.: exp(4*x)*cosh(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * 4^(n-k) = Sum_{k=0..n} binomial(n,k) * 4^(n-k/2) * (1+(-1)^k)/2. - Paul Barry, Nov 22 2003
a(n) = Sum_{k=0..n} 4^k*A098158(n,k). - Philippe Deléham, Dec 04 2006

A141041 a(n) = ((3 + 2*sqrt(3))^n + (3 - 2*sqrt(3))^n)/2.

Original entry on oeis.org

1, 3, 21, 135, 873, 5643, 36477, 235791, 1524177, 9852435, 63687141, 411680151, 2661142329, 17201894427, 111194793549, 718774444575, 4646231048097, 30033709622307, 194140950878133, 1254946834135719, 8112103857448713
Offset: 0

Author

Roger L. Bagula, Aug 18 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 3^(n-1) else 6*Self(n-1) +3*Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 10 2022
    
  • Mathematica
    a[n_]= ((3+2*Sqrt[3])^n + (3-2*Sqrt[3])^n)/2; Table[FullSimplify[a[n]], {n,0,30}]
    LinearRecurrence[{6,3},{1,3},30] (* Harvey P. Dale, Aug 25 2014 *)
  • SageMath
    A141041 = BinaryRecurrenceSequence(6,3,1,3)
    [A141041(n) for n in range(31)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = 3*abs(A099842(n-1)), for n > 0.
G.f.: (1-3*x)/(1-6*x-3*x^2). - Philippe Deléham, Mar 03 2012
a(n) = 6*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 3. - Philippe Deléham, Mar 03 2012
a(n) = Sum_{k=0..n} A201701(n,k)*3^(n-k). - Philippe Deléham, Mar 03 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(4*k-3)/(x*(4*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (-i*sqrt(3))^n * ChebyshevT(n, i*sqrt(3)). - G. C. Greubel, Oct 10 2022

Extensions

Edited by N. J. A. Sloane, Aug 24 2008

A097165 Expansion of (1-3x)/((1-x)(1-4x)(1-5x)).

Original entry on oeis.org

1, 7, 41, 227, 1221, 6447, 33601, 173467, 889181, 4533287, 23015961, 116477907, 587981941, 2962279327, 14900875121, 74862289547, 375743103501, 1884442140567, 9445117195081, 47317211944387, 236952563597861
Offset: 0

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Partial sums of A085351. Convolution of A034478 and 4^n. Convolution of A047849 and 5^n. a(n)=A097162(2n+1)/3. Third binomial transform of A097164.

Programs

  • Mathematica
    CoefficientList[Series[(1-3x)/((1-x)(1-4x)(1-5x)),{x,0,30}],x] (* or *) LinearRecurrence[{10,-29,20},{1,7,41},30] (* Harvey P. Dale, Jan 24 2012 *)

Formula

a(n)=5*5^n/2-4*4^n/3-1/6; a(n)=sum{k=0..n, (5^k+1)4^(n-k)/2}; a(n)=sum{k=0..n, (4^k+2)5^(n-k)/3}; a(n)=10a(n-1)-29a(n-2)+20a(n-3).
Showing 1-10 of 15 results. Next