cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A064840 a(n) = tau(n)*sigma(n).

Original entry on oeis.org

1, 6, 8, 21, 12, 48, 16, 60, 39, 72, 24, 168, 28, 96, 96, 155, 36, 234, 40, 252, 128, 144, 48, 480, 93, 168, 160, 336, 60, 576, 64, 378, 192, 216, 192, 819, 76, 240, 224, 720, 84, 768, 88, 504, 468, 288, 96, 1240, 171, 558, 288, 588, 108, 960, 288, 960, 320, 360
Offset: 1

Views

Author

Vladeta Jovovic, Oct 25 2001

Keywords

Comments

Dirichlet convolution of A034761 with (the Dirichlet inverse of A037213). - R. J. Mathar, Feb 11 2011

Examples

			For n = 10, a(10) = sigma(10) * tau(10) = 18 * 4 = 72. - _Indranil Ghosh_, Jan 20 2017
		

Crossrefs

Programs

  • Magma
    [ NumberOfDivisors(n)*SumOfDivisors(n) : n in [1..40]];
    
  • Maple
    with(numtheory): seq(sigma(n)*tau(n), n=1..58) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[ DivisorSigma[0, n] * DivisorSigma[1, n], {n, 1, 58}] (* Jean-François Alcover, Mar 26 2013 *)
  • PARI
    { for (n=1, 1000, a=numdiv(n)*sigma(n); write("b064840.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)*(e+1)/(p-1). a(n) = (1/2)*Sum_{i|n, j|n} (i+j).
Dirichlet g.f. (zeta(s)*zeta(s-1))^2/zeta(2s-1). - R. J. Mathar, Feb 11 2011
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (144*Zeta(3)) * (2*log(n) - 1 + 4*gamma - 4*Zeta'(3)/Zeta(3) + 24*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019

A134577 A127170 * A127648.

Original entry on oeis.org

1, 2, 2, 2, 0, 3, 3, 4, 0, 4, 2, 0, 0, 0, 5, 4, 4, 6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 7, 4, 6, 0, 8, 0, 0, 0, 8, 3, 0, 6, 0, 0, 0, 0, 0, 9, 4, 4, 0, 0, 10, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Gary W. Adamson, Nov 02 2007

Keywords

Comments

Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, 26, ...).
Left border = A000005: (1, 2, 2, 3, 2, 4, 2, ...).
A134577 * [1/1, 1/2, 1/3, ...] = A007425: (1, 3, 3, 6, 3, 9, 3, 10, ...).
A134577 * [1, 2, 3, ...] = A007433: (1, 6, 11, 27, 27, 66, ...).
A134577 * A000005 = A034761: (1, 6, 8, 23, 12, 48, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  2, 0, 3;
  3, 4, 0, 4;
  2, 0, 0, 0, 5
  4, 4, 6, 0, 0, 6;
  2, 0, 0, 0, 0, 0, 7;
  4, 6, 0, 8, 0, 0, 0, 8;
  ...
		

Crossrefs

Formula

A328487 Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 * (1 - 2^(1 - s))^2.

Original entry on oeis.org

1, 2, 8, 3, 12, 16, 16, 4, 42, 24, 24, 24, 28, 32, 96, 5, 36, 84, 40, 36, 128, 48, 48, 32, 98, 56, 184, 48, 60, 192, 64, 6, 192, 72, 192, 126, 76, 80, 224, 48, 84, 256, 88, 72, 504, 96, 96, 40, 178, 196, 288, 84, 108, 368, 288, 64, 320, 120, 120, 288, 124, 128, 672, 7, 336
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A000593 with itself.

Crossrefs

Programs

  • Mathematica
    nmax = 65; A000593 = Table[DivisorSum[n, Mod[#, 2] # &], {n, 1, nmax}]; Table[DivisorSum[n, A000593[[#]] A000593[[n/#]] &], {n, 1, nmax}]
    f[p_, e_] := ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3; f[2, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)

Formula

a(n) = Sum_{d|n} A000593(d) * A000593(n/d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (Pi^2 * (log(n)/2 + log(2) + gamma - 1/4) + 6*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e+1, and a(p^e) = ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3 for an odd prime p. - Amiram Eldar, Sep 15 2023

A349711 a(n) = Sum_{d|n} sopfr(d) * sopfr(n/d).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 16, 9, 20, 0, 44, 0, 28, 30, 40, 0, 54, 0, 68, 42, 44, 0, 104, 25, 52, 36, 92, 0, 124, 0, 80, 66, 68, 70, 147, 0, 76, 78, 152, 0, 164, 0, 140, 108, 92, 0, 200, 49, 110, 102, 164, 0, 144, 110, 200, 114, 116, 0, 298, 0, 124, 144, 140, 130, 244, 0, 212, 138, 236, 0, 300, 0, 148, 140
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2021

Keywords

Comments

Dirichlet convolution of A001414 with itself.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(i[1]*i[2], i=ifactors(n)[2]) end:
    a:= n-> add(b(d)*b(n/d), d=numtheory[divisors](n)):
    seq(a(n), n=1..75);  # Alois P. Heinz, Nov 26 2021
  • Mathematica
    sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; a[n_] := Sum[sopfr[d] sopfr[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
    a(n) = sumdiv(n, d, sopfr(d)*sopfr(n/d)); \\ Michel Marcus, Nov 26 2021
    
  • Python
    from itertools import product
    from sympy import factorint
    def A349711(n):
        f = factorint(n)
        plist, m = list(f.keys()), sum(f[p]*p for p in f)
        return sum((lambda x: x*(m-x))(sum(d[i]*p for i, p in enumerate(plist))) for d in product(*(list(range(f[p]+1)) for p in plist))) # Chai Wah Wu, Nov 27 2021

Formula

Dirichlet g.f.: ( zeta(s) * Sum_{p prime} p/(p^s-1) )^2.
a(p^k) = (k^3-k)*p^2/6 = A000292(k-1)*p^2 for p prime. - Chai Wah Wu, Nov 28 2021

A349712 a(n) = Sum_{d|n} sopf(d) * sopf(n/d).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 8, 9, 20, 0, 32, 0, 28, 30, 12, 0, 42, 0, 48, 42, 44, 0, 52, 25, 52, 18, 64, 0, 124, 0, 16, 66, 68, 70, 87, 0, 76, 78, 76, 0, 164, 0, 96, 78, 92, 0, 72, 49, 90, 102, 112, 0, 72, 110, 100, 114, 116, 0, 234, 0, 124, 102, 20, 130, 244, 0, 144, 138, 236, 0, 132, 0, 148, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2021

Keywords

Comments

Dirichlet convolution of A008472 with itself.

Crossrefs

Programs

  • Mathematica
    sopf[n_] := DivisorSum[n, # &, PrimeQ[#] &]; a[n_] := Sum[sopf[d] sopf[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
  • PARI
    sopf(n) = vecsum(factor(n)[, 1]); \\ A008472
    a(n) = sumdiv(n, d, sopf(d)*sopf(n/d)); \\ Michel Marcus, Nov 26 2021
    
  • Python
    from sympy import divisors, factorint
    def sopf(n): return sum(factorint(n))
    def a(n): return sum(sopf(d)*sopf(n//d) for d in divisors(n))
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Nov 26 2021

Formula

Dirichlet g.f.: ( zeta(s) * primezeta(s-1) )^2.
a(n) = Sum_{d|n} A061397(d) * A319131(n/d).
a(p) = 0 for p prime. - Michael S. Branicky, Nov 26 2021
a(p^k) = (k-1)*p^2 for p prime and k > 0. - Chai Wah Wu, Nov 28 2021

A328490 Dirichlet g.f.: zeta(s)^2 * zeta(s-2)^2.

Original entry on oeis.org

1, 10, 20, 67, 52, 200, 100, 380, 282, 520, 244, 1340, 340, 1000, 1040, 1973, 580, 2820, 724, 3484, 2000, 2440, 1060, 7600, 1978, 3400, 3460, 6700, 1684, 10400, 1924, 9710, 4880, 5800, 5200, 18894, 2740, 7240, 6800, 19760, 3364, 20000, 3700, 16348, 14664
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001157 with itself.
Dirichlet convolution of A000005 with A034714.
Dirichlet convolution of A000290 with A007433.

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(2,d)*DivisorSigma(2, n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Oct 16 2019
    
  • Mathematica
    Table[DivisorSum[n, DivisorSigma[2, #] DivisorSigma[2, n/#] &], {n, 1, 45}]
    f[p_, e_] :=((e*(p^2-1)+p^2-3)*p^(2*e+4) + e*(p^2-1) + 3*p^2 - 1)/(p^2-1)^3 ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^2 / (1 - p^2*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020

Formula

a(n) = Sum_{d|n} sigma_2(d) * sigma_2(n/d), where sigma_2 = A001157.
a(n) = Sum_{d|n} d^2 * tau(d) * tau(n/d), where tau = A000005.
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 * (zeta(3)*(log(n)/3 + 2*gamma/3 - 1/9) + 2*zeta'(3)/3), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(p^e) = ((e*(p^2-1)+p^2-3)*p^(2*e+4) + e*(p^2-1) + 3*p^2 - 1)/(p^2-1)^3. - Amiram Eldar, Sep 15 2023

A341637 a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d).

Original entry on oeis.org

1, 6, 12, 30, 30, 72, 56, 138, 123, 180, 132, 360, 182, 336, 360, 602, 306, 738, 380, 900, 672, 792, 552, 1656, 795, 1092, 1176, 1680, 870, 2160, 992, 2538, 1584, 1836, 1680, 3690, 1406, 2280, 2184, 4140, 1722, 4032, 1892, 3960, 3690, 3312, 2256, 7224, 2835, 4770, 3672, 5460
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}]
    Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}]
    f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} sigma(gcd(n,k)) * sigma(n/gcd(n,k)).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e+3) - (e+1)*(p^2-1)*p^e - p)/((p-1)^2*(p+1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/3) * A183699 * A330523 = 0.581007... . (End)

A343569 If n = Product (p_j^k_j) then a(n) = Product (2*(p_j^k_j + 1)), with a(1) = 1.

Original entry on oeis.org

1, 6, 8, 10, 12, 48, 16, 18, 20, 72, 24, 80, 28, 96, 96, 34, 36, 120, 40, 120, 128, 144, 48, 144, 52, 168, 56, 160, 60, 576, 64, 66, 192, 216, 192, 200, 76, 240, 224, 216, 84, 768, 88, 240, 240, 288, 96, 272, 100, 312, 288, 280, 108, 336, 288, 288, 320, 360, 120, 960, 124, 384, 320, 130
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (2 (#[[1]]^#[[2]] + 1) & /@ FactorInteger[n]); Table[a[n], {n, 64}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = 2*f[k,1]^f[k,2] + 2; f[k,2] = 1); factorback(f); \\ Michel Marcus, Apr 20 2021

Formula

a(n) = usigma(n) * 2^omega(n).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} usigma(d) * usigma(n/d).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * 2^omega(d) * 2^omega(n/d).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} A343525(d).

A349770 a(n) = Sum_{d|n} usigma(d) * usigma(n/d).

Original entry on oeis.org

1, 6, 8, 19, 12, 48, 16, 48, 36, 72, 24, 152, 28, 96, 96, 113, 36, 216, 40, 228, 128, 144, 48, 384, 88, 168, 136, 304, 60, 576, 64, 258, 192, 216, 192, 684, 76, 240, 224, 576, 84, 768, 88, 456, 432, 288, 96, 904, 164, 528, 288, 532, 108, 816, 288, 768, 320, 360, 120, 1824
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 29 2021

Keywords

Comments

Dirichlet convolution of A034448 with itself.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a[n_] := Sum[usigma[d] usigma[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]

Formula

Dirichlet g.f.: ( zeta(s) * zeta(s-1) / zeta(2*s-1) )^2.
Multiplicative with a(p^e) = e * (p^e + 1) + (p+1) * (p^e - 1)/(p-1). - Amiram Eldar, Nov 29 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / zeta(3)^2 * (Pi^2 * log(n)/72 + gamma * Pi^2/36 - Pi^2/144 + zeta'(2)/6 - Pi^2 * zeta'(3)/(18*zeta(3))), where zeta(3) = A002117, zeta'(2) = -A073002, zeta'(3) = -A244115 and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2021
Showing 1-9 of 9 results.