A034856 a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.
1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483
Offset: 1
Examples
From _Bruno Berselli_, Mar 09 2015: (Start) By the definition (first formula): ---------------------------------------------------------------------- 1 4 8 13 19 26 ---------------------------------------------------------------------- X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ---------------------------------------------------------------------- (End) From _Klaus Purath_, Dec 07 2020: (Start) Assuming a(i) is divisible by p with 0 < i < p and a(k) is the next term divisible by p, then from i + k == -3 (mod p) follows that k = min(p*m - i - 3) != i for any integer m. (1) 17|a(7) => k = min(17*m - 10) != 7 => m = 2, k = 24 == 7 (mod 17). Thus every a(17*m + 7) is divisible by 17. (2) a(9) = 53 => k = min(53*m - 12) != 9 => m = 1, k = 41. Thus every a(53*m + 9) and a(53*m + 41) is divisible by 53. (3) 101|a(273) => 229 == 71 (mod 101) => k = min(101*m - 74) != 71 => m = 1, k = 27. Thus every a(101*m + 27) and a(101*m + 71) is divisible by 101. (End) From _Omar E. Pol_, Aug 08 2021: (Start) Illustration of initial terms: _ _ . _ _ |_|_|_ . _ _ |_|_|_ |_|_|_|_ . _ _ |_|_|_ |_|_|_|_ |_|_|_|_|_ . _ _ |_|_|_ |_|_|_|_ |_|_|_|_|_ |_|_|_|_|_|_ . _ |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| . . 1 4 8 13 19 26 ------------------------------------------------------------------------ (End)
References
- A. S. Karpenko, Łukasiewicz's Logics and Prime Numbers, 2006 (English translation).
- G. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
- Wójcicki and Malinowski, eds., Łukasiewicz Sentential Calculi, Wrocław: Ossolineum, 1977.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 471.
- Milan Janjic, Two Enumerative Functions.
- W. F. Klostermeyer, M. E. Mays, L. Soltes, and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, Vol. 35, No. 4 (1997), pp. 318-328.
- Stavros Konstantinidis, António Machiavelo, Nelma Moreira, and Rogério Reis, On the size of partial derivatives and the word membership problem, Acta Informatica Vol. 58, 357-375.
- G. C. Moisil, Recherches sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy, 26 (1940), 431-466.
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
- D. D. Olesky, B. L. Shader, and P. van den Driessche, Permanents of Hessenberg (0,1)-matrices, Electronic Journal of Combinatorics, 12 (2005), #R70.
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev., Vol. 4, No. 5 (1960), pp. 473-478.
- Stefano Spezia, Illustrations for n = 1..9.
- Renzo Sprugnoli, Alternating Weighted Sums of Inverses of Binomial Coefficients, J. Integer Sequences, 15 (2012), #12.6.3. - From _N. J. A. Sloane_, Nov 29 2012
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
- Eric Weisstein's World of Mathematics, Path Complement Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for sequences related to Łukasiewicz.
Crossrefs
Programs
-
Haskell
a034856 = subtract 1 . a000096 -- Reinhard Zumkeller, Feb 20 2015
-
Magma
[Binomial(n + 1, 2) + n - 1: n in [1..60]]; // Vincenzo Librandi, May 21 2011
-
Maple
a := n -> hypergeom([-2, n-1], [1], -1); seq(simplify(a(n)), n=1..53); # Peter Luschny, Aug 02 2014
-
Mathematica
f[n_] := n (n + 3)/2 - 1; Array[f, 55] (* or *) k = 2; NestList[(k++; # + k) &, 1, 55] (* Robert G. Wilson v, Jun 11 2010 *) Table[Binomial[n + 1, 2] + n - 1, {n, 53}] (* or *) Rest@ CoefficientList[Series[x (1 + x - x^2)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Aug 29 2016 *)
-
Maxima
A034856(n) := block( n-1+(n+1)*n/2 )$ /* R. J. Mathar, Mar 19 2012 */
-
PARI
A034856(n)=(n+3)*n\2-1 \\ M. F. Hasler, Jan 21 2015
-
Python
def A034856(n): return n*(n+3)//2 -1 # G. C. Greubel, Jun 15 2025
Formula
G.f.: A(x) = x*(1 + x - x^2)/(1 - x)^3.
a(n) = A049600(3, n-2).
a(n) = binomial(n+2, 2) - 2. - Paul Barry, Feb 27 2003
With offset 5, this is binomial(n, 0) - 2*binomial(n, 1) + binomial(n, 2), the binomial transform of (1, -2, 1, 0, 0, 0, ...). - Paul Barry, Jul 01 2003
Row sums of triangle A131818. - Gary W. Adamson, Jul 27 2007
Binomial transform of (1, 3, 1, 0, 0, 0, ...). Also equals A130296 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
Row sums of triangle A134225. - Gary W. Adamson, Oct 14 2007
a(n) = A000217(n+1) - 2. - Omar E. Pol, Apr 23 2008
From Jaroslav Krizek, Sep 05 2009: (Start)
a(n) = a(n-1) + n + 1 for n >= 1.
a(n) = n*(n-1)/2 + 2*n - 1.
a(n) = Hyper2F1([-2, n-1], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = floor[1/(-1 + Sum_{m >= n+1} 1/S2(m,n+1))], where S2 is A008277. - Richard R. Forberg, Jan 17 2015
a(n) = A101881(2*(n-1)). - Reinhard Zumkeller, Feb 20 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - David Neil McGrath, May 23 2015
For n > 1, a(n) = 4*binomial(n-1,1) + binomial(n-2,2), comprising the third column of A267633. - Tom Copeland, Jan 25 2016
From Klaus Purath, Dec 07 2020: (Start)
a(2*n-1) = -A168244(n+1).
a(2*n) = A091823(n). (End)
Sum_{n>=1} 1/a(n) = 3/2 + 2*Pi*tan(sqrt(17)*Pi/2)/sqrt(17). - Amiram Eldar, Jan 06 2021
a(n) + a(n+1) = A028347(n+2). - R. J. Mathar, Mar 13 2021
E.g.f.: 1 + exp(x)*(x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 05 2021
Extensions
More terms from Zerinvary Lajos, May 12 2006
Comments