A089903
Sum of digits of numbers between 0 and (1/9)*(10^n-1).
Original entry on oeis.org
0, 1, 48, 960, 14572, 195684, 2456796, 29567908, 345679020, 3956790132, 44567901244, 495679012356, 5456790123468, 59567901234580, 645679012345692, 6956790123456804, 74567901234567916, 795679012345679028
Offset: 0
-
LinearRecurrence[{22,-141,220,-100},{0,1,48,960},20] (* Harvey P. Dale, May 12 2023 *)
A089904
Sum of digits of numbers between 0 and (2/9)*(10^n-1).
Original entry on oeis.org
0, 3, 109, 2055, 30501, 404947, 5049393, 60493839, 704938285, 8049382731, 90493827177, 1004938271623, 11049382716069, 120493827160515, 1304938271604961, 14049382716049407, 150493827160493853
Offset: 0
A089905
Sum of digits of numbers between 0 and (3/9)*(10^n-1).
Original entry on oeis.org
0, 6, 183, 3285, 47787, 627789, 7777791, 92777793, 1077777795, 12277777797, 137777777799, 1527777777801, 16777777777803, 182777777777805, 1977777777777807, 21277777777777809, 227777777777777811
Offset: 0
-
LinearRecurrence[{22,-141,220,-100},{0,6,183,3285},20] (* Harvey P. Dale, Apr 19 2013 *)
A089906
Sum of digits of numbers between 0 and (4/9)*(10^n-1).
Original entry on oeis.org
0, 10, 270, 4650, 66430, 864210, 10641990, 126419770, 1464197550, 16641975330, 186419753110, 2064197530890, 22641975308670, 246419753086450, 2664197530864230, 28641975308642010, 306419753086419790
Offset: 0
A089907
Sum of digits of numbers between 0 and (6/9)*(10^n-1).
Original entry on oeis.org
0, 21, 483, 7785, 107787, 1377789, 16777791, 197777793, 2277777795, 25777777797, 287777777799, 3177777777801, 34777777777803, 377777777777805, 4077777777777807, 43777777777777809, 467777777777777811
Offset: 0
-
LinearRecurrence[{22,-141,220,-100},{0,21,483,7785},20] (* Harvey P. Dale, Aug 22 2022 *)
A089908
Sum of digits of numbers between 0 and (7/9)*(10^n-1).
Original entry on oeis.org
0, 28, 609, 9555, 130501, 1654947, 20049393, 235493839, 2704938285, 30549382731, 340493827177, 3754938271623, 41049382716069, 445493827160515, 4804938271604961, 51549382716049407, 550493827160493853
Offset: 0
A089909
Sum of digits of numbers between 0 and (8/9)*(10^n-1).
Original entry on oeis.org
0, 36, 748, 11460, 154572, 1945684, 23456796, 274567908, 3145679020, 35456790132, 394567901244, 4345679012356, 47456790123468, 514567901234580, 5545679012345692, 59456790123456804, 634567901234567916
Offset: 0
A178756
Rectangular array T(n,k) = binomial(n,2)*k*n^(k-1) read by antidiagonals.
Original entry on oeis.org
1, 4, 3, 12, 18, 6, 32, 81, 48, 10, 80, 324, 288, 100, 15, 192, 1215, 1536, 750, 180, 21, 448, 4374, 7680, 5000, 1620, 294, 28, 1024, 15309, 36864, 31250, 12960, 3087, 448, 36, 2304, 52488, 172032, 187500, 97200, 28812, 5376, 648, 45
Offset: 2
1,4,12,32,80,192,448,1024
3,18,81,324,1215,4374,15309,52488
6,48,288,1536,7680,36864,172032,786432
10,100,750,5000,31250,187500,1093750,6250000
15,180,1620,12960,97200,699840,4898880,33592320
-
T:=Flat(List([3..10], n-> List([2..n-1], k-> Binomial(k,2)*(n-k)* k^(n-k-1) ))); # G. C. Greubel, Jan 24 2019
-
[[Binomial(k,2)*(n-k)*k^(n-k-1): k in [2..n-1]]: n in [3..10]]; // G. C. Greubel, Jan 24 2019
-
T:= (n, k)-> binomial(n, 2)*k*n^(k-1):
seq(seq(T(n, 1+d-n), n=2..d), d=2..14); # Alois P. Heinz, Jan 17 2013
-
Table[Range[8]! Rest[CoefficientList[Series[Binomial[n,2]x Exp[n x],{x,0,8}],x]],{n,2,10}]//Grid
T[n_, k_]:= Binomial[n, 2]*k*n^(k-1); Table[T[k,n-k], {n,2,10}, {k, 2, n-1}]//Flatten (* G. C. Greubel, Jan 24 2019 *)
-
{T(n,k) = binomial(n,2)*k*n^(k-1)};
for(n=2,10, for(k=2,n-1, print1(T(k,n-k), ", "))) \\ G. C. Greubel, Jan 24 2019
-
[[binomial(k,2)*(n-k)*k^(n-k-1) for k in (2..n-1)] for n in (3..10)] # G. C. Greubel, Jan 24 2019
A078761
Sum of the digits of all n-digit numbers.
Original entry on oeis.org
45, 855, 12600, 166500, 2070000, 24750000, 288000000, 3285000000, 36900000000, 409500000000, 4500000000000, 49050000000000, 531000000000000, 5715000000000000, 61200000000000000, 652500000000000000, 6930000000000000000, 73350000000000000000
Offset: 1
The sum of the digits of the two-digit numbers 10, 11, 12, ..., 99 is 855. Therefore a(2) = 855.
-
f[n_] := Module[{i, s}, s = 0; For[i = 10^(n - 1), i < 10^n, i++, s = s + Apply[Plus, IntegerDigits[i]]]; s]; t = Table[f[n], {n, 1, 6}]
n=Range[15] a=45*(9*n+1)*10^(n-2) (Adamchuk)
Rest[CoefficientList[Series[45x (1-x)/(1-10x)^2,{x,0,20}],x]] (* Harvey P. Dale, Aug 26 2019 *)
A316492
Numbers k such that the average digit in the concatenation of the numbers from 1 through k is an integer.
Original entry on oeis.org
1, 3, 5, 7, 9, 122, 576, 1422, 1876, 4122, 4576
Offset: 1
9 is a term because the average digit in 123456789 is (1+2+3+4+5+6+7+8+9)/9 = 45/9 = 5 (an integer).
122 is a term because 12345789101112..119120121122 has digit sum 1032 and digit count 258, and 1032/258 = 4 (an integer).
-
Flatten@ Position[ Divide @@@ Transpose[ Accumulate /@ {Total /@ #, Length /@ #} &@ IntegerDigits@ Range@ 5000], Integer] (* _Giovanni Resta, Aug 12 2018 *)
Showing 1-10 of 11 results.
Comments