cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A004009 Expansion of Eisenstein series E_4(q) (alternate convention E_2(q)); theta series of E_8 lattice.

Original entry on oeis.org

1, 240, 2160, 6720, 17520, 30240, 60480, 82560, 140400, 181680, 272160, 319680, 490560, 527520, 743040, 846720, 1123440, 1179360, 1635120, 1646400, 2207520, 2311680, 2877120, 2920320, 3931200, 3780240, 4747680, 4905600, 6026880
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
E_8 is also the Barnes-Wall lattice in 8 dimensions.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
The E_8 lattice is integral, unimodular, and even. The 240 shortest nonzero vectors in the lattice have norm squared 2. Of these vectors, 128 are all half-integer, and 112 are all integer. - Michael Somos, Jun 10 2019

Examples

			G.f. = 1 + 240*x + 2160*x^2 + 6720*x^3 + 17520*x^4 + 30240*x^5 + 60480*x^6 + ...
G.f. = 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10 + 60480*q^12 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Collected Papers of Srinivasa Ramanujan, Chap. 16, Ed. G. H. Hardy et al., Chelsea, NY, 1962.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046948 (partial sums), A000143, A108091 (eighth root).
Cf. A006352 (E_2), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A007331 (theta_2(q)^8 / 256), A000143 (theta_3(q)^8), A035016 (theta_4(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 4), 29) [1]; /* Michael Somos, May 11 2015 */
    
  • Magma
    L := Lattice("E",8); A := ThetaSeries(L, 57); A; /* Michael Somos, Jun 10 2019 */
    
  • Maple
    with(numtheory); E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(4);
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 240 DivisorSigma[ 3, n]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^2 + 14 t2 t3 + t3^2], {q, 0, n}]; (* Michael Somos, Jun 04 2014 *)
    max = 30; s = 1 + 240*Sum[k^3*(q^k/(1 - q^k)), {k, 1, max}] + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, after Gene Ward Smith *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^2 - t2 t3 + t3^2], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, 240 * sigma(n, 3))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^24 + 256 * x * eta(x^2 + A)^24) / (eta(x + A) * eta(x^2 + A))^8, n))}; /* Michael Somos, Dec 30 2008 */
    
  • PARI
    q='q+O('q^50); Vec((eta(q)^24+256*q*eta(q^2)^24)/(eta(q)*eta(q^2))^8) \\ Altug Alkan, Sep 30 2018
    
  • Python
    from sympy import divisor_sigma
    def a(n): return 1 if n == 0 else 240 * divisor_sigma(n, 3)
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 15 2017
  • Sage
    ModularForms(Gamma1(1), 4, prec=30).0 ; # Michael Somos, Jun 04 2013
    

Formula

Can also be expressed as E4(q) = 1 + 240*Sum_{i >= 1} i^3 q^i/(1 - q^i) - Gene Ward Smith, Aug 22 2006
Theta series of E_8 lattice = 1 + 240 * Sum_{m >= 1} sigma_3(m) * q^(2*m), where sigma_3(m) is the sum of the cubes of the divisors of m (A001158).
Expansion of (phi(-q)^8 - (2 * phi(-q) * phi(q))^4 + 16 * phi(q)^8) in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q)^24 + 256 * eta(q^2)^24) / (eta(q) * eta(q^2))^8 in powers of q. - Michael Somos, Dec 30 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 33*v^2 + 256*w^2 - 18*u*v + 16*u*w - 288*v*w . - Michael Somos, Jan 05 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 16*u2^2 + 81*u3^2 + 1296*u6^2 - 14*u1*u2 - 18*u1*u3 + 30*u1*u6 + 30*u2*u3 - 288*u2*u6 - 1134*u3*u6 . - Michael Somos, Apr 15 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = u^3*v + 9*w*u^3 - 84*u^2*v^2 + 246*u*v^3 - 253*v^4 - 675*w*u^2*v + 729*w^2*u^2 - 4590*w*u*v^2 + 19926*w*v^3 - 54675*w^2*u*v + 59049*w^3*u + 531441*w^3*v - 551124*w^2*v^2 . - Michael Somos, Apr 15 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^4 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
Convolution square is A008410. A008411 is convolution of this sequence with A008410.
Expansion of Ramanujan's function Q(q^2) = 12 (omega/Pi)^4 g2 (Weierstrass invariant) in powers of q^2.
Expansion of a(q) * (a(q)^3 + 8*c(q)^3) in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Jan 14 2015
G.f. is (theta_2(q)^8 + theta_3(q)^8 + theta_4(q)^8) / 2 where q = exp(Pi i t). So a(n) = A008430(n) + 128*A007331(n) (= A000143(2*n) + 128*A007331(n) = A035016(2*n) + 128*A007331(n)). - Seiichi Manyama, Sep 30 2018
a(n) = 240*A001158(n) if n>0. - Michael Somos, Oct 01 2018
Sum_{k=1..n} a(k) ~ 2 * Pi^4 * n^4 / 3. - Vaclav Kotesovec, Jan 14 2024

A007331 Fourier coefficients of E_{infinity,4}.

Original entry on oeis.org

0, 1, 8, 28, 64, 126, 224, 344, 512, 757, 1008, 1332, 1792, 2198, 2752, 3528, 4096, 4914, 6056, 6860, 8064, 9632, 10656, 12168, 14336, 15751, 17584, 20440, 22016, 24390, 28224, 29792, 32768, 37296, 39312, 43344, 48448, 50654, 54880, 61544, 64512
Offset: 0

Views

Author

Keywords

Comments

E_{infinity,4} is the unique normalized weight-4 modular form for Gamma_0(2) with simple zeros at i*infinity. Since this has level 2, it is not a cusp form, in contrast to A002408.
a(n+1) is the number of representations of n as a sum of 8 triangular numbers (from A000217). See the Ono et al. link, Theorem 5.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) gives the sum of cubes of divisors d of n such that n/d is odd. This is called sigma^#3(n) in the Ono et al. link. See a formula below. - _Wolfdieter Lang, Jan 12 2017

Examples

			G.f. = q + 8*q^2 + 28*q^3 + 64*q^4 + 126*q^5 + 224*q^6 + 344*q^7 + 512*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139, Ex (ii).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809, A076577.

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 4), 10) [2]; /* Michael Somos, May 27 2014 */
    
  • Maple
    nmax:=40: seq(coeff(series(x*(product((1-x^k)^8*(1+x^k)^16, k=1..nmax)), x, n+1), x, n), n=0..nmax); # Vaclav Kotesovec, Oct 14 2015
  • Mathematica
    Prepend[Table[Plus @@ (Select[Divisors[k + 1], OddQ[(k + 1)/#] &]^3), {k, 0, 39}], 0] (* Ant King, Dec 04 2010 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^3 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    f[n_] := Total[(2n/Select[ Divisors[ 2n], Mod[#, 4] == 2 &])^3]; Flatten[{0, Array[f, 40] }] (* Robert G. Wilson v, Mar 26 2015 *)
    nmax=60; CoefficientList[Series[x*Product[(1-x^k)^8 * (1+x^k)^16, {k,1,nmax}],{x,0,nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
    QP = QPochhammer; s = q * (QP[-1, q]/2)^16 * QP[q]^8 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8, n))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    a(n)=my(e=valuation(n,2)); 8^e * sigma(n/2^e, 3) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from sympy import divisors
    def a(n):
        return 0 if n == 0 else sum(((n//d)%2)*d**3 for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
  • Sage
    ModularForms( Gamma0(2), 4, prec=33).1; # Michael Somos, Jun 04 2013
    

Formula

G.f.: q * Product_{k>=1} (1-q^k)^8 * (1+q^k)^16. - corrected by Vaclav Kotesovec, Oct 14 2015
a(n) = Sum_{0
G.f.: Sum_{n>0} n^3*x^n/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002
Expansion of Jacobi theta constant theta_2(q)^8 / 256 in powers of q.
Expansion of eta(q^2)^16 / eta(q)^8 in powers of q. - Michael Somos, May 31 2005
Expansion of x * psi(x)^8 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jan 15 2012
Expansion of (Q(x) - Q(x^2)) / 240 in powers of x where Q() is a Ramanujan Lambert series. - Michael Somos, Jan 15 2012
Expansion of E_{gamma,2}^2 * E_{0,4} in powers of q.
Euler transform of period 2 sequence [8, -8, ...]. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - u^2*w + 16*u*v*w - 32*v^2*w + 256*v*w^2. - Michael Somos, May 31 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16^(-1) (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A035016. - Michael Somos, Jan 11 2009
Multiplicative with a(2^e) = 2^(3e), a(p^e) = (p^(3(e+1))-1)/(p^3-1). - Mitch Harris, Jun 13 2005
Dirichlet convolution of A154955 by A001158. Dirichlet g.f. zeta(s)*zeta(s-3)*(1-1/2^s). - R. J. Mathar, Mar 31 2011
A002408(n) = -(-1)^n * a(n).
Convolution square of A008438. - Michael Somos, Jun 15 2014
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
Sum_{k=1..n} a(k) ~ c * n^4, where c = Pi^4/384 = 0.253669... (A222072). - Amiram Eldar, Oct 19 2022

Extensions

Additional comments from Barry Brent (barryb(AT)primenet.com)
Wrong Maple program replaced by Vaclav Kotesovec, Oct 14 2015
a(0)=0 prepended by Vaclav Kotesovec, Oct 14 2015

A000143 Number of ways of writing n as a sum of 8 squares.

Original entry on oeis.org

1, 16, 112, 448, 1136, 2016, 3136, 5504, 9328, 12112, 14112, 21312, 31808, 35168, 38528, 56448, 74864, 78624, 84784, 109760, 143136, 154112, 149184, 194688, 261184, 252016, 246176, 327040, 390784, 390240, 395136, 476672, 599152, 596736, 550368, 693504, 859952
Offset: 0

Keywords

Comments

The relevant identity for the o.g.f. is theta_3(x)^8 = 1 + 16*Sum_{j >= 1} j^3*x^j/(1 - (-1)^j*x^j). See the Hardy-Wright reference, p. 315. - Wolfdieter Lang, Dec 08 2016

Examples

			1 + 16*q + 112*q^2 + 448*q^3 + 1136*q^4 + 2016*q^5 + 3136*q^6 + 5504*q^7 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.61); p. 79 Eq. (32.32).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, pp. 314 - 315.

Crossrefs

8th column of A286815. - Seiichi Manyama, May 27 2017
Row d=8 of A122141.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cf. A004018, A000118, A000141 for the expansion of the powers of 2, 4, 6 of theta_3(x).

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A000143List(len) = JacobiTheta3(len, 8)
    A000143List(37) |> println # Peter Luschny, Mar 12 2018
    
  • Maple
    (sum(x^(m^2),m=-10..10))^8;
    with(numtheory); rJ := n-> if n=0 then 1 else 16*add((-1)^(n+d)*d^3, d in divisors(n)); fi; [seq(rJ(n),n=0..100)]; # N. J. A. Sloane, Sep 15 2018
  • Mathematica
    Table[SquaresR[8, n], {n, 0, 33}] (* Ray Chandler, Dec 06 2006 *)
    SquaresR[8,Range[0,50]] (* Harvey P. Dale, Aug 26 2011 *)
    QP = QPochhammer; s = (QP[q^2]^5/(QP[q]*QP[q^4])^2)^8 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, n==0, 16 * (-1)^n * sumdiv( n, d, (-1)^d * d^3))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A))^2)^8, n))} /* Michael Somos, Sep 25 2005 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A000143(n): return prod((p**(3*(e+1))-(1 if p&1 else 15))//(p**3-1) for p, e in factorint(n).items())<<4 if n else 1 # Chai Wah Wu, Jun 21 2024
  • SageMath
    Q = DiagonalQuadraticForm(ZZ, [1]*8)
    Q.representation_number_list(60) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(z)^8. Also a(n)=16*(-1)^n*Sum_{0
Expansion of phi(q)^8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 21 2008
Expansion of (eta(q^2)^5 / (eta(q) * eta(q^4))^2)^8 in powers of q. - Michael Somos, Sep 25 2005
G.f.: s(2)^40/(s(1)*s(4))^16, where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
Euler transform of period 4 sequence [16, -24, 16, -8, ...]. - Michael Somos, Apr 10 2005
a(n) = 16 * b(n) and b(n) is multiplicative with b(p^e) = (p^(3*e+3) - 1) / (p^3 - 1) -2[p<3]. - Michael Somos, Sep 25 2005
G.f.: 1 + 16 * Sum_{k>0} k^3 * x^k / (1 - (-x)^k). - Michael Somos, Sep 25 2005
A035016(n) = (-1)^n * a(n). 16 * A008457(n) = a(n) unless n=0.
Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = 16*(1 - 2^(1-s) + 4^(2-s))*zeta(s)*zeta(s-3). [Borwein and Choi], R. J. Mathar, Jul 02 2012
a(n) = (16/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 /24. - Vaclav Kotesovec, Jul 12 2024

A138503 a(n) = Sum_{d|n} (-1)^(d-1)*d^3.

Original entry on oeis.org

1, -7, 28, -71, 126, -196, 344, -583, 757, -882, 1332, -1988, 2198, -2408, 3528, -4679, 4914, -5299, 6860, -8946, 9632, -9324, 12168, -16324, 15751, -15386, 20440, -24424, 24390, -24696, 29792, -37447, 37296, -34398, 43344, -53747, 50654, -48020, 61544, -73458
Offset: 1

Author

Michael Somos, Mar 21 2008

Keywords

Comments

Also, expansion of (1 - phi(-q)^8) / 16 in powers of q where phi() is a Ramanujan theta function.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 7*q^2 + 28*q^3 - 71*q^4 + 126*q^5 - 196*q^6 + 344*q^7 - 583*q^8 + ...
		

Crossrefs

Divisor sums Sum_{d|n} (-1)^(d-1)*d^k: A048272 (k = 0), A002129 (k = 1), A321543 (k = 2), A279395 (k = 4, unsigned), A321544 - A321551 (k = 5 to k = 12).

Programs

  • Maple
    with(numtheory):
    a := n -> add( (-1)^(d-1)*d^3, d in divisors(n) ): seq(a(n), n = 1..40);
    #  Peter Bala, Jan 11 2021
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ n, -(-1)^# #^3&]]; (* Michael Somos, Sep 25 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, q]^8) / 16, {q, 0, n}]; (* Michael Somos, Sep 25 2015 *)
    nmax = 40; Rest[CoefficientList[Series[-Product[((1-q^k)/(1+q^k))^8, {k, 1, nmax}]/16, {q, 0, nmax}], q]] (* Vaclav Kotesovec, Sep 26 2015 *)
    f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); f[2, e_] := 2 - (2^(3*e + 3) - 1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 04 2022 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv(n, d, -(-1)^d * d^3))};

Formula

Expansion of (1 - (eta(q)^2 / eta(q^2))^8) / 16 in powers of q.
a(n) is multiplicative with a(2^e) = -(8^(e+1) - 15) / 7, a(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1).
G.f.: Sum_{k>0} k^3 * -(-x)^k / (1 - x^k).
a(n) = -(-1)^n * A008457(n). -16 * a(n) = A035016(n) unless n=0.
G.f.: Sum_{n >= 1} x^n*(1 - 4*x^n + x^(2*n))/(1 + x^n)^4. - Peter Bala, Jan 11 2021

Extensions

Simpler definition from N. J. A. Sloane, Nov 23 2018

A092820 a(0) = 1; for n>0, a(n) = 16 times sum of cubes of divisors of n.

Original entry on oeis.org

1, 16, 144, 448, 1168, 2016, 4032, 5504, 9360, 12112, 18144, 21312, 32704, 35168, 49536, 56448, 74896, 78624, 109008, 109760, 147168, 154112, 191808, 194688, 262080, 252016, 316512, 327040, 401792, 390240, 508032, 476672, 599184, 596736, 707616, 693504
Offset: 0

Author

N. J. A. Sloane, Sep 11 2004

Keywords

Crossrefs

A319307 Expansion of theta_4(q)^16 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -32, 480, -4480, 29152, -140736, 525952, -1580800, 3994080, -8945824, 18626112, -36714624, 67978880, -118156480, 197120256, -321692928, 509145568, -772845120, 1143441760, -1681379200, 2428524096, -3392205824, 4658843520, -6411152640, 8705492608, -11488092896
Offset: 0

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), this sequence (b=16), A319308 (b=20), A319309 (b=24), A319310 (b=28).
Cf. A000152.

Formula

Expansion of eta(q)^32 / eta(q^2)^16 in powers of q.

A319308 Expansion of theta_4(q)^20 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -40, 760, -9120, 77560, -497648, 2508000, -10232640, 34729720, -100906760, 259114704, -606957280, 1327461600, -2738111280, 5341699520, -9915552192, 17701924600, -30615844560, 51294999960, -83279292960, 131880275664, -204949382400, 312126610080, -464844224960, 680432137440
Offset: 0

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), A319307 (b=16), this sequence (b=20), A319309 (b=24), A319310 (b=28).

Formula

Expansion of eta(q)^40 / eta(q^2)^20 in powers of q.

A319309 Expansion of theta_4(q)^24 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -48, 1104, -16192, 170064, -1362336, 8662720, -44981376, 195082320, -721175536, 2319457632, -6631997376, 17231109824, -41469483552, 93703589760, -200343312768, 407488018512, -793229226336, 1487286966928, -2697825744960, 4744779429216, -8110465650176
Offset: 0

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), A319307 (b=16), A319308 (b=20), this sequence (b=24), A319310 (b=28).
Cf. A000156.

Formula

Expansion of eta(q)^48 / eta(q^2)^24 in powers of q.

A319310 Expansion of theta_4(q)^28 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -56, 1512, -26208, 327656, -3147984, 24189984, -152867520, 811401192, -3681079640, 14500933104, -50376047904, 156797510688, -444306558864, 1163495873088, -2851049839680, 6597606440936, -14512424533488, 30505974273096, -61591664700384, 119983597365744, -226303038736128
Offset: 0

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), A319307 (b=16), A319308 (b=20), A319309 (b=24), this sequence (b=28).

Formula

Expansion of eta(q)^56 / eta(q^2)^28 in powers of q.

A319553 Expansion of 1/theta_4(q)^8 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 16, 144, 960, 5264, 25056, 106944, 418176, 1520784, 5201232, 16871648, 52252992, 155341248, 445226848, 1234726272, 3323392128, 8704504976, 22234655520, 55498917840, 135595345600, 324759439584, 763505859072, 1764050361152, 4009763323008, 8975341703616, 19800832628336
Offset: 0

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), this sequence (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004409, A035016.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^8))

Formula

Convolution inverse of A035016.
a(n) = (-1)^n * A004409(n).
a(0) = 1, a(n) = (16/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^8.
Showing 1-10 of 12 results. Next