cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A051005 PartitionsQ[ A035359 ], i.e., prime values of PartitionsQ.

Original entry on oeis.org

2, 2, 3, 5, 89, 29927, 444793, 602644050950309, 5907806880101973271193081, 442874899733097781915111718440153
Offset: 1

Views

Author

Keywords

Comments

The next term is known (see A035359) but is too big to include here.

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 2500, n++, If[PrimeQ[q = PartitionsQ[n]], Print["n = ", n, " Q = ", q]; Sow[q]]]][[2, 1]] (* Jean-François Alcover, Oct 19 2012 *)
    Select[PartitionsQ[Range[2500]],PrimeQ] (* Harvey P. Dale, Aug 11 2015 *)

A046063 Numbers k such that the k-th partition number A000041(k) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, 188, 212, 216, 302, 366, 417, 440, 491, 498, 525, 546, 658, 735, 753, 825, 841, 863, 1085, 1086, 1296, 1477, 1578, 1586, 1621, 1793, 2051, 2136, 2493, 2502, 2508, 2568, 2633, 2727, 2732, 2871, 2912, 3027, 3098, 3168, 3342, 3542, 3641, 4118
Offset: 1

Views

Author

Keywords

Comments

The corresponding primes are given in A049575. - Joerg Arndt, May 09 2013

Crossrefs

Programs

  • Mathematica
    Select[ Range@3341, PrimeQ@ PartitionsP@# &] (* Robert G. Wilson v *)
  • PARI
    for(n=0,10^5,my(p=numbpart(n));if(isprime(p),print1(n,", "))); \\ Joerg Arndt, May 09 2013
    
  • Python
    from sympy import isprime, npartitions
    print([n for n in range(1, 5001) if isprime(npartitions(n))]) # Indranil Ghosh, Apr 10 2017

Extensions

b-file extended by Max Alekseyev, Jul 07 2009, Jun 14 2011, Jan 08 2012, May 19 2014

A330991 Positive integers whose number of factorizations into factors > 1 (A001055) is a prime number (A000040).

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 40, 42, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 69, 70, 74, 77, 78, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

In short, A001055(a(n)) belongs to A000040.

Examples

			Factorizations of selected terms:
  (4)    (8)      (16)       (24)       (60)       (96)
  (2*2)  (2*4)    (2*8)      (3*8)      (2*30)     (2*48)
         (2*2*2)  (4*4)      (4*6)      (3*20)     (3*32)
                  (2*2*4)    (2*12)     (4*15)     (4*24)
                  (2*2*2*2)  (2*2*6)    (5*12)     (6*16)
                             (2*3*4)    (6*10)     (8*12)
                             (2*2*2*3)  (2*5*6)    (2*6*8)
                                        (3*4*5)    (3*4*8)
                                        (2*2*15)   (4*4*6)
                                        (2*3*10)   (2*2*24)
                                        (2*2*3*5)  (2*3*16)
                                                   (2*4*12)
                                                   (2*2*3*8)
                                                   (2*2*4*6)
                                                   (2*3*4*4)
                                                   (2*2*2*12)
                                                   (2*2*2*2*6)
                                                   (2*2*2*3*4)
                                                   (2*2*2*2*2*3)
		

Crossrefs

Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[facs[#]]]&]

A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists.

Original entry on oeis.org

4, 8, 16, 24, 60, 0, 0, 96, 0, 144, 216, 0, 0, 0, 288, 0, 0, 0, 768, 0, 0, 0, 0, 0, 864, 8192, 0, 0, 1080, 0, 0, 0, 1800, 3072, 0, 0, 0, 0, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3456, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24576
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Examples

			Factorizations of the initial positive terms are:
  4    8      16       24       60       96
  2*2  2*4    2*8      3*8      2*30     2*48
       2*2*2  4*4      4*6      3*20     3*32
              2*2*4    2*12     4*15     4*24
              2*2*2*2  2*2*6    5*12     6*16
                       2*3*4    6*10     8*12
                       2*2*2*3  2*5*6    2*6*8
                                3*4*5    3*4*8
                                2*2*15   4*4*6
                                2*3*10   2*2*24
                                2*2*3*5  2*3*16
                                         2*4*12
                                         2*2*3*8
                                         2*2*4*6
                                         2*3*4*4
                                         2*2*2*12
                                         2*2*2*2*6
                                         2*2*2*3*4
                                         2*2*2*2*2*3
		

Crossrefs

All positive terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A331022 Numbers k such that the number of strict integer partitions of k is a power of 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 16, 20, 29, 34, 45
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.
Conjecture: This sequence is finite.
Conjecture: The analogous sequence for non-strict partitions is: 0, 1, 2.
Next term > 5*10^4 if it exists. - Seiichi Manyama, Jan 12 2020

Examples

			The strict integer partitions of the initial terms:
  (1)  (2)  (3)    (4)    (6)      (9)
            (2,1)  (3,1)  (4,2)    (5,4)
                          (5,1)    (6,3)
                          (3,2,1)  (7,2)
                                   (8,1)
                                   (4,3,2)
                                   (5,3,1)
                                   (6,2,1)
		

Crossrefs

The version for primes instead of powers of 2 is A035359.
The version for factorizations instead of strict partitions is A330977.
Numbers whose number of partitions is prime are A046063.

Programs

  • Mathematica
    Select[Range[0,1000],IntegerQ[Log[2,PartitionsQ[#]]]&]

A265835 Numbers n such that A015128(n)/2 is prime.

Original entry on oeis.org

2, 4, 16, 36, 400, 1296, 1521, 52441
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Comments

Next term, if it exists, is greater than 4000000. - Vaclav Kotesovec, updated Apr 12 2017
The values of a(n) are the squares of these integers for 1 < n < 9: 2, 4, 6, 20, 36, 39, 229. Squares also appear in the sequence of numbers k such that A015128(k)/2 is semiprime. - Altug Alkan, Dec 16 2015

Examples

			4 is a term because A015128(4)/2 = 14/2 = 7 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], PrimeQ[Sum[PartitionsP[#-k]*PartitionsQ[k], {k, 0, #}]/2] &]
  • PARI
    a015128(n) = polcoeff(exp(sum(m=1, n\2+1, 2*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))/(2*m-1))), n);
    for(n=1, 1e3, if(ispseudoprime(a015128(n)/2), print1(n, ", "))) \\ Altug Alkan, Dec 16 2015

A330994 Numerator of P(n)/Q(n) = A000041(n)/A000009(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 3, 11, 15, 21, 14, 77, 101, 135, 176, 231, 297, 385, 245, 627, 198, 1002, 1255, 1575, 979, 812, 1505, 1859, 4565, 1401, 3421, 2783, 1449, 6155, 4961, 17977, 21637, 26015, 31185, 1778, 2123, 26587, 63261, 75175, 44567, 17593, 8911, 49091
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.

Crossrefs

The denominators are A330995.
The rounded quotients are A330996.
The same for factorizations is A331023.

Programs

  • Mathematica
    Table[PartitionsP[n]/PartitionsQ[n],{n,0,100}]//Numerator

Formula

A330995 Denominator P(n)/Q(n) = A000041(n)/A000009(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 1, 3, 4, 5, 3, 15, 18, 22, 27, 32, 38, 46, 27, 64, 19, 89, 104, 122, 71, 55, 96, 111, 256, 74, 170, 130, 64, 256, 195, 668, 760, 864, 982, 53, 60, 713, 1610, 1816, 1024, 384, 185, 970, 3264, 1829, 4097, 4582, 5120, 5718, 3189, 7108, 2639
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.
Conjecture: The only 1's occur at n = 0, 1, 2, 7.

Crossrefs

The numerators are A330994.
The rounded quotients are A330996.
The same for factorizations is A331024.

Programs

  • Mathematica
    Table[PartitionsP[n]/PartitionsQ[n],{n,0,100}]//Denominator

Formula

A330993 Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 21, 22, 25, 33, 38, 41, 45, 46, 49, 50, 55, 57, 58, 63
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This multiset (row k of A305936) is generally not the same as the multiset of prime indices of k. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
Also numbers whose inverse prime shadow has a prime number of factorizations. A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798. The inverse prime shadow of k is the least number whose prime exponents are the prime indices of k.

Examples

			The multiset partitions for n = 1..6:
  {11}    {12}    {111}      {1111}        {123}      {1112}
  {1}{1}  {1}{2}  {1}{11}    {1}{111}      {1}{23}    {1}{112}
                  {1}{1}{1}  {11}{11}      {2}{13}    {11}{12}
                             {1}{1}{11}    {3}{12}    {2}{111}
                             {1}{1}{1}{1}  {1}{2}{3}  {1}{1}{12}
                                                      {1}{2}{11}
                                                      {1}{1}{1}{2}
The factorizations for n = 1..8:
  4    6    8      16       30     24       32         60
  2*2  2*3  2*4    2*8      5*6    3*8      4*8        2*30
            2*2*2  4*4      2*15   4*6      2*16       3*20
                   2*2*4    3*10   2*12     2*2*8      4*15
                   2*2*2*2  2*3*5  2*2*6    2*4*4      5*12
                                   2*3*4    2*2*2*4    6*10
                                   2*2*2*3  2*2*2*2*2  2*5*6
                                                       3*4*5
                                                       2*2*15
                                                       2*3*10
                                                       2*2*3*5
		

Crossrefs

The same for powers of 2 (instead of primes) is A330990.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).
Factorizations of a number's inverse prime shadow are A318284.
Numbers with a prime number of factorizations are A330991.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]

Formula

A001055(A181821(a(n))) belongs to A000040.

A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A080257 in lacking 60.

Examples

			Strict factorizations of selected terms:
  (6)    (12)   (24)     (48)     (216)
  (2*3)  (2*6)  (3*8)    (6*8)    (3*72)
         (3*4)  (4*6)    (2*24)   (4*54)
                (2*12)   (3*16)   (6*36)
                (2*3*4)  (4*12)   (8*27)
                         (2*3*8)  (9*24)
                         (2*4*6)  (12*18)
                                  (2*108)
                                  (3*8*9)
                                  (4*6*9)
                                  (2*3*36)
                                  (2*4*27)
                                  (2*6*18)
                                  (2*9*12)
                                  (3*4*18)
                                  (3*6*12)
                                  (2*3*4*9)
		

Crossrefs

The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
The non-strict version is A330991.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[strfacs[#]]]&]
Showing 1-10 of 22 results. Next