cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A146292 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A036041(n)), giving the number of divisors of A025487(n) with m prime factors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

All rows are palindromic. T(n, 0) = T(n, A036041(n)) = 1.
Every row that appears in A146291 appears exactly once in the table. Rows appear in order of first appearance in A146291.

Examples

			Rows begin:
  1;
  1,1;
  1,1,1;
  1,2,1;
  1,1,1,1;
  1,2,2,1;
  1,1,1,1,1;...
36's 9 divisors include 1 divisor with 0 total prime factors (1);, 2 with 1 (2 and 3); 3 with 2 (4, 6 and 9); 2 with 3 (12 and 18); and 1 with 4 (36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 2, 3, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 3k^2 + 2k^3 + (1)k^4 = (1 + k + k^2)(1 + k + k^2), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of prime factors of n counted with multiplicity, see A001222.
Row sums equal A146288(n). T(n, 1) = A061394(n) for n>1.
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146291. Also cf. A146289, A146290.

Formula

If A025487(n)'s canonical factorization into prime powers is the product of p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A073093 Number of prime power divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 6, 5, 3, 2, 5, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 7, 2, 4, 4, 5, 2, 4, 2, 5, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 24 2002

Keywords

Comments

Also, number of prime divisors of 2n (counted with multiplicity).
A001221(n) < a(n) <= A000005(n) for all n; a(n)=A001221(n)+1 iff n is squarefree (A005117); a(n)=A000005(n) iff n is a prime power (A000961).
a(n) is also the number of kBenoit Cloitre, Oct 13 2002
a(n) is also 1 + the number of divisors of n with omega(d)=1, where omega is A001221. - Enrique Pérez Herrero, Nov 05 2009
Length of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012
a(n) depends only on the prime signature of n with a(A025487(n)) = 1, 2, 3, 3, 4, 4, 5, 5, 4, 6, 5, 6, 5, 7, 6, 7 ,.. = A036041(n)+1; (n>=1). - R. J. Mathar, May 28 2017

Crossrefs

Cf. A000961, A023888, A054372. Bisection of A001222.

Programs

  • Haskell
    a073093 = length . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Magma
    [n eq 1 select 1 else &+[p[2]: p in Factorization(n)]+1: n in [1..100]]; // Vincenzo Librandi, Jan 06 2017
  • Maple
    seq(numtheory:-bigomega(n)+1, n=1..1000); # Robert Israel, Sep 06 2015
  • Mathematica
    f[n_] := Plus @@ Flatten[ Table[1, {#[[2]]}] & /@ FactorInteger[n]]; Table[ f[2n], {n, 105}] (* Robert G. Wilson v, Dec 23 2004 *)
    A001221[n_] := (Length[ FactorInteger[n]]); SetAttributes[A001221, Listable]; A073093[n_]:=Length[Select[A001221[Divisors[n]], # == 1 &]]; (* Enrique Pérez Herrero, Nov 05 2009 *)
    PrimeOmega[Range[100]] + 1 (* Paolo Xausa, Nov 23 2024 *)
  • MuPAD
    numlib::Omega (2*n)$ n=1..105 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=sum(k=1,n,if(1-polresultant(polcyclo(n),polcyclo(k)),1,0))
    
  • PARI
    A073093(n)=bigomega(n)+1   \\ M. F. Hasler, Dec 08 2010
    

Formula

If n = Product (p_j^k_j), a(n) = 1 + Sum (k_j).
a(n) = bigomega(n)+1 = A001222(n)+1 = A001222(2*n).
a(n) = if n=1 then 1 else a(A032742(n)) + 1. - Reinhard Zumkeller, Sep 24 2009
a(n) = max { a(d) ; d 1. - David W. Wilson, Dec 08 2010
a(n) = Sum_{k = 1 .. A001221(n)} A010055(A027750(n,k)). - Reinhard Zumkeller, Mar 18 2012
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017

A124832 Table of exponents of prime factorizations in A025487.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 2, 1, 1, 6, 3, 2, 5, 1, 3, 1, 1, 7, 4, 2, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 5, 2, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 5, 1, 1, 9, 6, 2, 4, 2, 1, 8, 1, 3, 1, 1, 1, 5, 3, 2, 2, 2, 6, 1, 1, 10, 3, 3, 1, 7, 2, 2, 2, 1, 1, 4, 4, 5, 2, 1, 9, 1, 4, 1, 1, 1, 6
Offset: 2

Views

Author

Keywords

Comments

This is an enumeration of all partitions.

Examples

			From _M. F. Hasler_, Oct 12 2018: (Start)
The table starts as follows:
  n : signature   (A025487(n) = factorization)
  1 : []          (1 = empty product)
  2 : [1]         (2 = 2^1)
  3 : [2]         (4 = 2^2)
  4 : [1, 1]      (6 = 2^1 * 3^1)
  5 : [3]         (8 = 2^3)
  6 : [2, 1]      (12 = 2^2 * 3^1)
  7 : [4]         (16 = 2^4)
  8 : [3,1]       (24 = 2^3 * 3^1)
  9 : [1, 1, 1]   (30 = 2^1 * 3^1 * 5^1)
  etc. (End)
		

Crossrefs

Cf. A025487, A036041 (row sums), A061394 (row lengths), A124829, A036036, A080577.

Programs

Formula

A025487(n) = Product_{k=1..A061394(n)} prime(k)^T(n,k). [Edited by M. F. Hasler, Oct 12 2018]

Extensions

Erroneous explanations in cross-references corrected by M. F. Hasler, Oct 12 2018

A146290 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A061394(n)), giving the number of divisors of A025487(n) with m distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 4, 1, 4, 3, 1, 3, 3, 1, 1, 5, 1, 4, 4, 1, 5, 4, 1, 4, 5, 2, 1, 6, 1, 5, 6, 1, 6, 5, 1, 5, 7, 3, 1, 7, 1, 6, 8, 1, 5, 8, 4, 1, 7, 6, 1, 4, 6, 4, 1, 1, 6, 9, 1, 6, 9, 4, 1, 8, 1, 7, 10, 1, 6, 11, 6, 1, 8, 7, 1, 5, 9, 7, 2, 1, 7, 12, 1, 7, 11, 5, 1, 9, 1, 8, 12, 1, 7, 14
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

The formula used in obtaining the A025487(n)th row (see below) also gives the number of divisors of the k-th power of A025487(n).
Every row that appears in A146289 appears exactly once in the table. Rows appear in order of first appearance in A146289.
T(n,0)=1.

Examples

			Rows begin:
  1;
  1,1;
  1,2;
  1,2,1;
  1,3;
  1,3,2;
  1,4;
  1,4,3;...
36's 9 divisors include 1 divisor with 0 distinct prime factors (1); 4 with 1 (2, 3, 4 and 9); and 4 with 2 (6, 12, 18 and 36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 4, 4). These are the positive coefficients of the polynomial equation 1 + 4k + 4k^2 = (1 + 2k)(1 + 2k), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of distinct prime factors of n, see A001221.
Row sums equal A146288(n). T(n, 1)=A036041(n) for n>1. T(n, A061394(n))=A052306(n).
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146289. Also cf. A146291, A146292.

Formula

If A025487(n)'s canonical factorization into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + ek).

A124831 Number of prime factors of A055932(n) with repetition.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 3, 5, 4, 5, 4, 4, 6, 5, 4, 6, 5, 5, 7, 6, 4, 5, 5, 7, 4, 6, 6, 8, 5, 7, 5, 6, 6, 8, 5, 7, 5, 7, 6, 9, 6, 8, 6, 5, 7, 7, 5, 9, 6, 6, 8, 6, 8, 7, 10, 5, 7, 9, 7, 6, 8, 6, 8, 7, 5, 6, 10, 7, 7, 9, 7, 6, 9, 8, 11, 6, 8, 6, 10, 5, 8, 7, 7, 9, 7, 9, 8, 6, 7, 11, 6, 8, 8, 10, 8, 6, 7, 10
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Map[PrimeOmega, {1}~Join~Select[Range[10^4], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] (* Michael De Vlieger, Feb 06 2020 *)

Formula

a(n) = A001222(A055932(n)).

A051466 Largest product of primorials less than A025487(n) that divides A025487(n).

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 6, 16, 12, 24, 30, 32, 36, 48, 60, 64, 72, 60, 96, 30, 72, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 180, 480, 512, 360, 576, 420, 432, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 210, 1260, 1296, 1440
Offset: 2

Views

Author

Keywords

Comments

Note that A036041(A025487(n)) = A036041(a(n)) + 1 since A025487(n)/a(n) is prime.

Examples

			A025487 = 1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, ...; a(n)= 1, 2, 2, 4, 6, 8, 12, 6, 16, 12, ... . (12 divides 36, but 16 through 32 do not.)
A025487(38) = 900 = 5#*5#. The largest product of primorials that divides this number will be 5#*3# = 180 = a(38). - _Charlie Neder_, Oct 20 2018
		

Crossrefs

Programs

  • Haskell
    a051466 n = a051466_list !! (n-2)
    a051466_list = f [head a025487_list] $ tail a025487_list where
       f us (v:vs) = fromJust (find (\x -> mod v x == 0) us) : f (v : us) vs
    -- Reinhard Zumkeller, Jul 17 2013
  • Mathematica
    (* First, load second program at A025487, then: *)
    With[{s = Union@ Flatten@ f[5]}, Table[SelectFirst[Reverse@ Take[s, n - 1], Mod[s[[n]], #] == 0 &], {n, 2, Length@ s}]] (* Michael De Vlieger, Dec 27 2019 *)

Formula

a(n) = A025487(n) / p, where p is the largest prime such that p^A051282(n) | A025487(n). - Charlie Neder, Oct 12 2018

Extensions

Offset updated by Matthew Vandermast, Jul 03 2012
Name edited by Charlie Neder, Oct 20 2018
Name clarified by Antti Karttunen, Dec 24 2019

A060826 a(n) is the largest number such that 3^a(n) [also 6^a(n)] divides A025487(n) (least prime signatures).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 3, 1, 0, 2, 2, 1, 1, 3, 1, 0, 2, 2, 1, 1, 3, 2, 1, 0, 3, 2, 2, 4, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 2, 4, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 2, 4, 3, 2, 1, 2, 4, 1, 3, 2, 3, 1, 5, 0, 3, 2, 1, 2, 4, 3, 2, 1, 2, 4, 1, 3, 2, 2, 3, 1, 5, 0, 3, 2, 1, 2, 4, 3, 2
Offset: 1

Views

Author

Henry Bottomley, Apr 30 2001

Keywords

Crossrefs

Formula

a(n) = A007949(A025487(n)) = A122841(A025487(n)). - Amiram Eldar, Dec 29 2020

Extensions

Name edited and offset corrected by Amiram Eldar, Dec 29 2020

A380146 Numbers that set records in A113901.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 48, 60, 120, 210, 240, 420, 480, 840, 1680, 3360, 6720, 13440, 26880, 36960, 53760, 73920, 107520, 147840, 215040, 295680, 591360, 960960, 1182720, 1921920, 2365440, 3843840, 4730880, 7687680, 9461760, 15375360, 30750720, 61501440, 123002880
Offset: 1

Views

Author

Hal M. Switkay, Jan 13 2025

Keywords

Comments

All terms in this sequence are numbers of least prime signature (A025487). Therefore it is easier to search for new terms in the product of A061394 (omega of least prime signature) and A036041 (bigomega of least prime signature). Similar to but ultimately different from A378630. Terms appear to be products of primorials (A002110) with powers of 2 (A000079), and thus are never divisible by the square of an odd prime.

Examples

			omega(60) = 3 and bigomega(60) = 4; their product is 12. This product is larger than that for any smaller natural number, so 60 is a term of this sequence.
		

Crossrefs

Showing 1-9 of 9 results.