cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A140141 Positions of second appearances of primes in A039649.

Original entry on oeis.org

2, 4, 8, 9, 22, 21, 32, 27, 46, 58, 62, 57, 55, 49, 94, 106, 118, 77, 134, 142, 91, 158, 166, 115, 119, 125, 206, 214, 133, 145, 254, 262, 274, 278, 298, 302, 169, 243, 334, 346, 358, 209, 382, 221, 394, 398, 422, 446, 454, 458, 295, 478, 287, 502, 512, 526, 538
Offset: 1

Views

Author

Vladimir Shevelev, May 10 2008

Keywords

Comments

The first occurrence of a prime p in A039649 is not interesting because for an odd prime p it is evidently p.
Since phi(p) = phi(2p) = p-1 for odd prime p, then for n > 1 we have prime(n) < a(n) <= 2*prime(n).
For n > 1, a(n) is the smallest composite k such that phi(k) = prime(n)-1. - Thomas Ordowski, Jan 02 2017
If prime(n) > 7 is in A005385, then a(n) = 2*prime(n). - Thomas Ordowski (conjecture) and Robert Israel (proof), Jan 04 2017

Crossrefs

Programs

  • Mathematica
    Table[Function[p, First@ Drop[Lookup[#, p], 1]]@ Prime@ n, {n, 57}] &@ PositionIndex@ Table[EulerPhi@ n + 1, {n, 10^5}] (* Michael De Vlieger, Jan 02 2017, Version 10 *)

Extensions

Corrected and extended by Ray Chandler, May 20 2008

A140607 (A039649(2n+1)+A137576(n))/2.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 13, 17, 19, 22, 23, 31, 37, 29, 31, 31, 43, 37, 37, 41, 43, 55, 47, 64, 45, 53, 61, 55, 59, 61, 55, 61, 67, 78, 71, 73, 91, 106, 79, 136, 83, 77, 85, 89, 91, 96, 109, 97, 136, 101, 103, 109, 107, 109, 109, 113, 155, 103, 145, 166, 111, 201, 127, 113
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2008

Keywords

Comments

If 2n+1 is a prime then a(n) = 2n+1.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2008, May 24 2008

A039653 a(0) = 0; for n > 0, a(n) = sigma(n)-1.

Original entry on oeis.org

0, 0, 2, 3, 6, 5, 11, 7, 14, 12, 17, 11, 27, 13, 23, 23, 30, 17, 38, 19, 41, 31, 35, 23, 59, 30, 41, 39, 55, 29, 71, 31, 62, 47, 53, 47, 90, 37, 59, 55, 89, 41, 95, 43, 83, 77, 71, 47, 123, 56, 92, 71, 97, 53, 119, 71, 119, 79, 89, 59, 167, 61, 95, 103, 126, 83, 143, 67, 125, 95
Offset: 0

Views

Author

Keywords

Comments

Call an integer k between 1 and n a "semi-divisor" of n if n leaves a remainder of 1 when divided by k, i.e., n == 1 (mod k). a(n) gives the sum of the semi-divisors of n+1. - Joseph L. Pe, Sep 11 2002
a(n) is also the sum of the strong divisors of n, for n >= 1. - Omar E. Pol, May 01 2015

Crossrefs

Programs

Formula

a(p) = p for p prime.
G.f.: -2*x^2/(Q(0) - 2*x^2 + 2*x), where Q(k) = (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+3)*(k+1)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
Let A(x) be the g.f. of A039653 and B(x) the g.f. of A155085. Then B(x) = 1/(1-x) + 1/(1-x)^2 + A(x)/x. - Sergei N. Gladkovskii, May 16 2013

A039654 a(n) = prime reached by iterating f(x) = sigma(x)-1 starting at n, or -1 if no prime is ever reached.

Original entry on oeis.org

2, 3, 11, 5, 11, 7, 23, 71, 17, 11, 71, 13, 23, 23, 71, 17, 59, 19, 41, 31, 47, 23, 59, 71, 41, 71, 71, 29, 71, 31, 167, 47, 53, 47, 233, 37, 59, 71, 89, 41, 167, 43, 83, 167, 71, 47, 167, 167, 167, 71, 97, 53, 167, 71, 167, 79, 89, 59, 167, 61, 167, 103, 311, 83, 167, 67
Offset: 2

Views

Author

Keywords

Comments

It appears nearly certain that a prime is always reached for n>1.
Since sigma(n) > n for n > 1, and sigma(n) = n + 1 only for n prime, the iteration either reaches a prime and loops there, or grows indefinitely. - Franklin T. Adams-Watters, May 10 2010
Guy (2004) attributes this conjecture to Erdos. See Erdos et al. (1990). - N. J. A. Sloane, Aug 30 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 149.

Crossrefs

Cf. A039655 (the number of steps needed), A039649, A039650, A039651, A039652, A039653, A039656, A291301, A291302, A291776, A291777.
For records see A292112, A292113.
Cf. A177343: number of times the n-th prime occurs in this sequence.
Cf. A292874: least k such that a(k) = prime(n).

Programs

Extensions

Contingency for no prime reached added by Franklin T. Adams-Watters, May 10 2010
Changed escape value from 0 to -1 to be consistent with several related sequences. - N. J. A. Sloane, Aug 31 2017

A039650 Prime reached by iterating f(x) = phi(x)+1 on n.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 7, 5, 7, 5, 11, 5, 13, 7, 7, 7, 17, 7, 19, 7, 13, 11, 23, 7, 13, 13, 19, 13, 29, 7, 31, 17, 13, 17, 13, 13, 37, 19, 13, 17, 41, 13, 43, 13, 13, 23, 47, 17, 43, 13, 13, 13, 53, 19, 41, 13, 37, 29, 59, 17, 61, 31, 37, 13, 43, 13, 67, 13, 13, 13, 71, 13, 73, 37, 41
Offset: 1

Views

Author

Keywords

Comments

Or, a(n) = lim_k {s(k,n)} where s(k,n) is defined inductively on k by: s(1,n) = n; s(k+1,n) = 1 + phi(s(k,n)). - Joseph L. Pe, Apr 30 2002
Sequence A229487 gives the conjectured largest number that converges to prime(n). - T. D. Noe, Oct 17 2013
For n>1, phi(n) <= n-1, with equality iff n is prime. So the trajectory decreases until it hits a prime. So a(n) always exists. - N. J. A. Sloane, Sep 22 2017

Examples

			s(24,1) = 24, s(24,2) = 1 + phi(24) = 1 + 8 = 9, s(24,3) = 1 + phi(9) = 1 + 6 = 7, s(24,4) = 1 + phi(7) = 1 + 6 = 7,.... Therefore a(24) = lim_k {s(24,k)} = 7.
		

References

  • Alexander S. Karpenko, Lukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 51.

Crossrefs

Programs

  • Maple
    A039650 := proc(n)
        local nitr,niitr ;
        niitr := n ;
        while true do:
            nitr := 1+numtheory[phi](niitr) ;
            if nitr = niitr then
                return nitr ;
            end if;
            niitr := nitr ;
        end do:
    end proc:
    seq(A039650(n),n=1..40) ; # R. J. Mathar, Dec 11 2019
  • Mathematica
    f[n_] := FixedPoint[1 + EulerPhi[ # ] &, n]; Table[ f[n], {n, 1, 75}]

A039655 Number of iterations of f(x) = sigma(x)-1 applied to n required to reach a prime, or -1 if no prime is ever reached.

Original entry on oeis.org

0, 0, 2, 0, 1, 0, 2, 5, 1, 0, 4, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 2, 1, 3, 2, 0, 1, 0, 5, 1, 1, 1, 2, 0, 1, 2, 1, 0, 4, 0, 1, 5, 1, 0, 2, 4, 2, 1, 1, 0, 3, 1, 3, 1, 1, 0, 1, 0, 4, 1, 2, 1, 2, 0, 3, 4, 2, 0, 2, 0, 1, 2, 1, 4, 1, 0, 2, 2, 3, 0, 1, 1, 1, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 0, 3, 2, 2, 0, 2, 0, 2, 1, 2
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Divisors@n - 1; g[n_] := Length@ NestWhileList[ f@# &, n, !PrimeQ@# &] - 1; Table[ g@n, {n, 2, 106}] (* Robert G. Wilson v, May 07 2010 *)
  • PARI
    a(n)=my(t);while(!isprime(n),n=sigma(n)-1;t++);t \\ Charles R Greathouse IV, Sep 16 2014

Extensions

Escape clause added by N. J. A. Sloane, Aug 31 2017

A066071 Nonprime numbers k such that phi(k) + 1 is prime.

Original entry on oeis.org

1, 4, 6, 8, 9, 10, 12, 14, 18, 21, 22, 26, 27, 28, 32, 34, 36, 38, 40, 42, 46, 48, 49, 54, 55, 57, 58, 60, 62, 63, 74, 75, 76, 77, 82, 86, 88, 91, 93, 94, 95, 98, 99, 100, 106, 108, 110, 111, 114, 115, 117, 118, 119, 122, 124, 125, 126, 132, 133, 134, 135, 142, 145, 146
Offset: 1

Views

Author

Labos Elemer, Dec 03 2001

Keywords

Comments

A039698 with the primes removed. For every prime p, 2p is in the sequence. - Ray Chandler, May 26 2008
Includes 3*p for p in A005382 and p^2 for p in A065508. - Robert Israel, Dec 29 2017

Examples

			Solutions to 1+phi(x)=13 are {13, 21, 26, 28, 36, 42} of which the 5 composites are in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..200] |not IsPrime(n) and IsPrime(EulerPhi(n)+1)]; // Vincenzo Librandi, Jul 02 2016
  • Maple
    select(n -> not isprime(n) and isprime(1+numtheory:-phi(n)), [$1..1000]); # Robert Israel, Dec 29 2017
  • Mathematica
    Select[Complement[Range@ #, Prime@ Range@ PrimePi@ #] &@ 150, PrimeQ[EulerPhi@ # + 1] &] (* Michael De Vlieger, Jul 01 2016 *)
  • PARI
    isok(k) = { !isprime(k) && isprime(eulerphi(k) + 1) } \\ Harry J. Smith, Nov 10 2009
    

A013596 Irregular triangle of coefficients of cyclotomic polynomial Phi_n(x) (exponents in decreasing order).

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

We follow Maple in defining Phi_0 to be x; it could equally well be taken to be 1.

Examples

			Phi_0 = x             --> Row 0: [1, 0]
Phi_1 = x - 1         --> Row 1: [1, -1]
Phi_2 = x + 1         --> Row 2: [1, 1]
Phi_3 = x^2 + x + 1   --> Row 3: [1, 1, 1]
Phi_4 = x^2 + 1       --> Row 4: [1, 0, 1]
etc. After row zero, each row n has A039649(n) terms.
		

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968; see p. 90.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 325.
  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, p. 194.

Crossrefs

Version with reversed rows: A013595.

Programs

  • Maple
    with(numtheory): [ seq(cyclotomic(n,x), n=0..48) ];
  • Mathematica
    Join[{1, 0}, Table[ CoefficientList[ Cyclotomic[n, x], x] // Reverse, {n, 1, 16}] // Flatten] (* Jean-François Alcover, Dec 11 2012 *)
  • PARI
    A013595row(n) = { if(!n, p=x, p = polcyclo(n)); Vecrev(p); }; \\ This function from Michel Marcus's code for A013595.
    n=0; for(r=0,385,v=A013595row(r);k=length(v);while(k>0,write("b013596.txt", n, " ", v[k]);n=n+1;k=k-1)); \\ Antti Karttunen, Aug 13 2017

Extensions

Example section edited by Antti Karttunen, Aug 13 2017

A039651 Number of iterations of f(x) = phi(x)+1 on n required to reach a prime.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 1, 0, 2, 0, 1, 2, 1, 3, 1, 0, 1, 3, 1, 0, 1, 0, 2, 3, 1, 0, 1, 1, 2, 3, 3, 0, 1, 1, 3, 1, 1, 0, 1, 0, 1, 1, 3, 2, 2, 0, 3, 4, 3, 0, 3, 0, 1, 1, 1, 1, 3, 0, 3, 2, 1, 0, 3, 3, 1, 2, 1, 0, 3, 1, 4, 1, 1, 1, 3, 0, 1, 1, 1, 0, 3, 0, 2, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[NestWhileList[EulerPhi[#] + 1 &, n, UnsameQ, All]] - 2, {n, 100}] (* T. D. Noe, Oct 17 2013 *)

A039698 Numbers k such that phi(k) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 79, 82, 83, 86, 88, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103
Offset: 1

Views

Author

Keywords

Comments

Positive integers k for which values of A039649(k) are primes. - Vladimir Shevelev, May 10 2008
For every prime p, the numbers p and 2p are terms of this sequence. - Vladimir Shevelev, May 10 2008
Union of A000040 and A066071. - Ray Chandler, May 26 2008

Examples

			phi(10)+1 = 4+1 = 5, a prime number, so 10 is a term.
		

Crossrefs

Cf. A039689 (complement), A296079 (characteristic function).

Programs

  • Magma
    [n: n in [1..200] | IsPrime(EulerPhi(n)+1)]; // Vincenzo Librandi, Aug 13 2013
  • Mathematica
    Select[Range[300], PrimeQ[EulerPhi[#] + 1]&] (* Vincenzo Librandi, Aug 13 2013 *)

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar
Showing 1-10 of 33 results. Next