cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A048146 Sum of non-unitary divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 8, 0, 0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 24, 5, 0, 12, 16, 0, 0, 0, 30, 0, 0, 0, 41, 0, 0, 0, 36, 0, 0, 0, 24, 18, 0, 0, 56, 7, 15, 0, 28, 0, 36, 0, 48, 0, 0, 0, 48, 0, 0, 24, 62, 0, 0, 0, 36, 0, 0, 0, 105, 0, 0, 20, 40, 0, 0, 0, 84, 39, 0, 0, 64, 0, 0, 0, 72, 0, 54, 0
Offset: 1

Views

Author

Keywords

Examples

			If n = 1000, the 12 non-unitary divisors are {2, 4, 5, 10, 20, 25, 40, 50, 100, 200, 250, 500} and their sum is a(n) = a(1000) = 1206. a(16) = a(2^4) = (2^4 - 2) / (2 - 1)= 14.
		

Crossrefs

Programs

  • Mathematica
    us[n_Integer] := (d = Divisors[n]; l = Length[d]; k = 1; s = n; While[k < l, If[ GCD[ d[[k]], n/d[[k]] ] == 1, s = s + d[[k]]]; k++ ]; s); Table[ DivisorSigma[1, n] - us[n], {n, 1, 100} ]
    (* Second program: *)
    Table[DivisorSum[n, # &, ! CoprimeQ[#, n/#] &], {n, 91}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    a(n)=my(f=factor(n)); sigma(f)-prod(i=1, #f~, f[i, 1]^f[i, 2]+1) \\ Charles R Greathouse IV, Jun 17 2015
    
  • Python
    from sympy.ntheory.factor_ import divisor_sigma, udivisor_sigma
    def A048146(n): return divisor_sigma(n)-udivisor_sigma(n) # Chai Wah Wu, Aug 22 2024

Formula

a(n) = A000203(n) - A034448(n) = sigma(n) - usigma(n). a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = (p^k - p) / (p - 1), for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k >=2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * (1 - 1/zeta(3)) = 0.1382506... . - Amiram Eldar, Dec 09 2022

Extensions

Edited by Jaroslav Krizek, Mar 01 2009

A082293 Numbers having exactly one square divisor > 1.

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 68, 75, 76, 84, 88, 90, 92, 98, 99, 104, 116, 117, 120, 121, 124, 125, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 164, 168, 169, 171, 172, 175, 184, 188, 189, 198, 204, 207, 212
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

Numbers of the form m*p^2, p prime and m squarefree (A005117). [Corrected by Peter Munn, Nov 17 2020]
The asymptotic density of this sequence is (6/Pi^2)*Sum_{n>=1} 1/prime(n)^2 = 0.274933... (A222056). - Amiram Eldar, Jul 07 2020

Crossrefs

Complement of A048111 within A013929.
Subsequence of A252849.
Disjoint union of A048109 and A060687.
A285508 is a subsequence.

Programs

  • Mathematica
    Select[Range[2, 200], MemberQ[{2, 3}, (e = Sort[FactorInteger[#][[;; , 2]]])[[-1]]] && (Length[e] == 1 || e[[-2]] == 1) &] (* Amiram Eldar, Jul 07 2020 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4)); #f && f[1]>1 && f[1]<4 && (#f==1 || f[2]==1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, primerange
    def A082293(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return int(n+x-sum(g(x//p**2) for p in primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025

Formula

A046951(a(n)) = 2.

A048106 Number of unitary divisors of n (A034444) - number of non-unitary divisors of n (A048105).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 0, 1, 4, 2, 2, 2, 4, 4, -1, 2, 2, 2, 2, 4, 4, 2, 0, 1, 4, 0, 2, 2, 8, 2, -2, 4, 4, 4, -1, 2, 4, 4, 0, 2, 8, 2, 2, 2, 4, 2, -2, 1, 2, 4, 2, 2, 0, 4, 0, 4, 4, 2, 4, 2, 4, 2, -3, 4, 8, 2, 2, 4, 8, 2, -4, 2, 4, 2, 2, 4, 8, 2, -2, -1, 4, 2, 4, 4, 4, 4, 0, 2, 4, 4, 2, 4, 4, 4, -4, 2, 2, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(1 + PrimeNu@ n) - DivisorSigma[0, n], {n, 99}] (* Michael De Vlieger, Aug 01 2017 *)
  • PARI
    A048106(n) = (2^(1+omega(n)) - numdiv(n)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisor_count, primefactors
    def a(n): return 1 if n==1 else 2**(1 + len(primefactors(n))) - divisor_count(n) # Indranil Ghosh, May 25 2017

Formula

a(n) = 2^(1+omega(n)) - d(n) = 2^(1+A001221(n)) - A000005(n).
a(n) = -Sum_{ d divides n } (-1)^mu(d). - Vladeta Jovovic, Jan 24 2002
From Amiram Eldar, Dec 09 2022: (Start)
a(n) > 0 iff n is in A048107.
a(n) < 0 iff n is in A048111.
a(n) <= 0 iff n is in A048108.
a(n) = 0 iff n is in A048109.
Dirichlet g.f: zeta(s)^2*(2/zeta(2*s) - 1).
Sum_{k=1..n} a(k) ~ (12/Pi^2 - 1)*n*log(n) + ((12/Pi^2-1)*(2*gamma-1) - (24/Pi^2)*zeta'(2)/zeta(2))*n, where gamma is Euler's constant (A001620). (End)

A082294 Numbers having exactly two square divisors > 1.

Original entry on oeis.org

16, 32, 48, 80, 81, 96, 112, 160, 162, 176, 208, 224, 240, 243, 272, 304, 336, 352, 368, 405, 416, 464, 480, 486, 496, 528, 544, 560, 567, 592, 608, 624, 625, 656, 672, 688, 736, 752, 810, 816, 848, 880, 891, 912, 928, 944, 976, 992, 1040, 1053, 1056, 1072
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

Numbers of the form p^e * s where p is prime, e is 4 or 5 and s is squarefree and coprime to p. - David A. Corneth, Sep 01 2020
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} (1/(p^3*(p+1)) + 1/(p^4*(p+1))) = 0.04680621631952059947... . - Amiram Eldar, Sep 25 2022

Examples

			81 has 3 square divisors: 1, 9 and 81, therefore 81 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], MemberQ[{{4}, {5}}, Select[FactorInteger[#][[;;,2]], #1 > 1 &]] &] (* Amiram Eldar, Sep 01 2020 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4)); if(#f==1, f[1]>3&&f[1]<6, #f>1 && f[1]>3 && f[1]<6 && f[2]==1) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A046951(a(n)) = 3.

A378434 Arithmetic mean between the Dirichlet inverses of {sum of unitary divisors} and {sum of squarefree divisors}.

Original entry on oeis.org

1, -3, -4, 5, -6, 12, -8, -9, 9, 18, -12, -20, -14, 24, 24, 16, -18, -27, -20, -30, 32, 36, -24, 36, 20, 42, -24, -40, -30, -72, -32, -30, 48, 54, 48, 48, -38, 60, 56, 54, -42, -96, -44, -60, -54, 72, -48, -64, 35, -60, 72, -70, -54, 72, 72, 72, 80, 90, -60, 120, -62, 96, -72, 56, 84, -144, -68, -90, 96, -144, -72, -90
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Arithmetic mean between A158523 and A178450.
Apparently differs from A378433 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...

Crossrefs

Cf. A034448, A048111, A048250, A158523, A178450, A325973, A378433, A378435 (Dirichlet inverse).

Programs

  • PARI
    A158523(n) = { my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i, 2]*(f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)); }; \\ From A158523
    A178450(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(f[i,2]%2), 2*(f[i, 1]^(f[i, 2]/2)), -(1+f[i,1])*(f[i, 1]^((f[i, 2]-1)/2)))); };
    A378434(n) = ((A158523(n)+A178450(n))/2);

Formula

a(n) = (1/2) * (A158523(n)+A178450(n)).

A082295 Numbers having more than two square divisors > 1.

Original entry on oeis.org

36, 64, 72, 100, 108, 128, 144, 180, 192, 196, 200, 216, 225, 252, 256, 288, 300, 320, 324, 360, 384, 392, 396, 400, 432, 441, 448, 450, 468, 484, 500, 504, 512, 540, 576, 588, 600, 612, 640, 648, 675, 676, 684, 700, 704, 720, 729, 756, 768, 784, 792, 800
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

If n is in the sequence, so is m*n. - Charles R Greathouse IV, Oct 16 2015
The asymptotic density of this sequence is 1 - (6/Pi^2) * (1 + Sum_{p prime} (1/p^2 + 1/(p^3*(p+1)) + 1/(p^4*(p+1)))) = 0.07033321843992718294... . - Amiram Eldar, Sep 25 2022

Examples

			n=200 has 4 square divisors: 1, 4, 25 and 100, therefore 200 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Length[Rest[Select[ Divisors[#], IntegerQ[ Sqrt[ #]]&]]]> 2&] (* Harvey P. Dale, Jan 08 2014 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4)); #f && (f[1]>5 || (#f>1 && f[2]>1)) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A046951(a(n)) > 3.
a(n) < 17n for n > 25. - Charles R Greathouse IV, Oct 16 2015

A378433 Dirichlet inverse of A325973, where A325973 is the arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}.

Original entry on oeis.org

1, -3, -4, 5, -6, 12, -8, -9, 9, 18, -12, -20, -14, 24, 24, 15, -18, -27, -20, -30, 32, 36, -24, 36, 20, 42, -24, -40, -30, -72, -32, -27, 48, 54, 48, 42, -38, 60, 56, 54, -42, -96, -44, -60, -54, 72, -48, -60, 35, -60, 72, -70, -54, 72, 72, 72, 80, 90, -60, 120, -62, 96, -72, 45, 84, -144, -68, -90, 96, -144, -72, -72
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Apparently differs from A378434 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...

Crossrefs

Programs

  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    memoA378433 = Map();
    A378433(n) = if(1==n,1,my(v); if(mapisdefined(memoA378433,n,&v), v, v = -sumdiv(n,d,if(dA325973(n/d)*A378433(d),0)); mapput(memoA378433,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA325973(n/d) * a(d).

A273785 Numbers n where a composite c < n exists such that n^(c-1) == 1 (mod c^2), i.e., such that c is a "base-n Wieferich pseudoprime".

Original entry on oeis.org

17, 26, 33, 37, 49, 65, 73, 80, 81, 82, 97, 99, 101, 109, 113, 129, 145, 146, 161, 163, 168, 170, 177, 181, 182, 193, 197, 199, 201, 209, 217, 224, 225, 226, 239, 241, 242, 244, 251, 253, 257, 268, 273, 289, 293, 301, 305, 321, 323, 325, 337, 353, 360, 361
Offset: 1

Views

Author

Felix Fröhlich, May 30 2016

Keywords

Comments

Contains n+1 for n in A048111. - Robert Israel, Apr 20 2017

Examples

			15 satisfies the congruence 26^(15-1) == 1 (mod 15^2) and 15 < 26, so 26 is a term of the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Res:= {}:
    for c from 4 to N-1 do
      if not isprime(c) then
        for m in map(rhs@op, [msolve(x^(c-1)-1, c^2)]) do
           if m > c and m <= N then Res:= Res union {m, seq(k*c^2+m, k=1..(N-m)/c^2)}
           else Res:= Res union {seq(k*c^2+m, k=1..(N-m)/c^2)}
           fi
        od
      fi
    od:
    sort(convert(Res,list)); # Robert Israel, Apr 20 2017
  • Mathematica
    nn = 361; c = Select[Range@ nn, CompositeQ]; Select[Range@ nn, Function[n, Count[TakeWhile[c, # <= n &], k_ /; Mod[n^(k - 1), k^2] == 1] > 0]] (* Michael De Vlieger, May 30 2016 *)
  • PARI
    is(n) = forcomposite(c=1, n-1, if(Mod(n, c^2)^(c-1)==1, return(1))); return(0)

A378435 Dirichlet inverse of the arithmetic mean between the Dirichlet inverses of {sum of unitary divisors} and {sum of squarefree divisors}.

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 9, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 15, 48, 54, 48, 25, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 36, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 24, 84, 144, 68, 72, 96, 144, 72, 33, 74, 114, 64, 80, 96, 168, 80, 54, 34
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

The first negative term is a(2592) = -48.
Apparently differs from A325973 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...

Crossrefs

Dirichlet inverse of A378434.

Programs

  • PARI
    A158523(n) = { my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i, 2]*(f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)); }; \\ From A158523
    A178450(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(f[i,2]%2), 2*(f[i, 1]^(f[i, 2]/2)), -(1+f[i,1])*(f[i, 1]^((f[i, 2]-1)/2)))); };
    A378434(n) = ((A158523(n)+A178450(n))/2);
    memoA378435 = Map();
    A378435(n) = if(1==n,1,my(v); if(mapisdefined(memoA378435,n,&v), v, v = -sumdiv(n,d,if(dA378434(n/d)*A378435(d),0)); mapput(memoA378435,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378434(n/d) * a(d).

A048195 Numbers k for which binomial(k, floor(k/2)) has fewer unitary than non-unitary divisors.

Original entry on oeis.org

10, 25, 26, 27, 28, 29, 30, 34, 36, 37, 38, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 64, 66, 68, 69, 70, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110
Offset: 1

Views

Author

Keywords

Comments

A048111 applied to central binomial coefficients.

Examples

			k = 58: binomial(58,29) has 20480 divisors, 8192 unitary ones and 12288 non-unitary ones, and 8192 < 12288.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[Binomial[n, Floor[n/2]]][[;; , 2]]}, Times @@ (e + 1) > 2^(Length[e] + 1)]; Select[Range[120], q] (* Amiram Eldar, Oct 05 2024 *)
  • PARI
    nbud(n) = 1<A034444
    isok(n) = my(b=binomial(n, n\2)); numdiv(b) > 2*nbud(b); \\ Michel Marcus, Mar 15 2018

Formula

Extensions

More terms from Michel Marcus, Mar 15 2018
Showing 1-10 of 11 results. Next