cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005063 Sum of squares of primes dividing n.

Original entry on oeis.org

0, 4, 9, 4, 25, 13, 49, 4, 9, 29, 121, 13, 169, 53, 34, 4, 289, 13, 361, 29, 58, 125, 529, 13, 25, 173, 9, 53, 841, 38, 961, 4, 130, 293, 74, 13, 1369, 365, 178, 29, 1681, 62, 1849, 125, 34, 533, 2209, 13, 49, 29, 298, 173, 2809, 13, 146, 53, 370, 845, 3481, 38, 3721
Offset: 1

Views

Author

Keywords

Comments

The set of these terms apart from 0 is A048261. - Bernard Schott, Feb 10 2022
Inverse Möbius transform of n^2 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024

Crossrefs

Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), this sequence (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

Formula

Additive with a(p^e) = p^2.
G.f.: Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 11 2017: (Start)
a(n) = A005066(n) + 4*A059841(n).
a(n) = A005079(n) + A005083(n) + 4*A059841(n).
a(n) = A005071(n) + A005075(n) + 9*A079978(n).
(End)
Dirichlet g.f.: primezeta(s-2)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p^2. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^2 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

Extensions

More terms from Franklin T. Adams-Watters, May 03 2009

A121518 Numbers that are not the sum of the squares of distinct primes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86
Offset: 1

Views

Author

T. D. Noe, Aug 04 2006

Keywords

Comments

There are 2438 terms, the largest of which is 17163.

References

Programs

  • Mathematica
    s={0}; Do[p=Prime[n]; s=Union[s,s+p^2], {n,PrimePi[140]}]; s=Select[s,0<#
    				

Formula

Complement of A048261.

A088910 Conjectured minimal required number k of terms in a representation n=sum_(i=1..k)e_i*(p_i)^2 by distinct primes p_i, where e_i is 1 or -1.

Original entry on oeis.org

4, 3, 4, 4, 1, 2, 5, 5, 4, 1, 4, 4, 3, 2, 4, 3, 2, 5, 5, 4, 3, 2, 4, 3, 2, 1, 4, 4, 3, 2, 3, 5, 4, 3, 2, 4, 3, 4, 3, 3, 2, 5, 5, 4, 3, 2, 4, 3, 2, 1, 4, 4, 3, 2, 3, 5, 4, 3, 2, 4, 5, 4, 3, 3, 4, 3, 5, 4, 3, 4, 3, 3, 2, 3, 2, 4, 3, 4, 3, 4, 4, 3, 4, 3, 5, 4, 4, 3, 4, 5, 5, 4, 3, 4, 4, 3, 2, 3, 4, 4, 3, 4, 5, 5, 4
Offset: 0

Views

Author

Hugo Pfoertner, Oct 24 2003

Keywords

Comments

It is conjectured that all sequence terms are <=5. The terms with a(n)=5 were provided by W. Edwin Clark.

Examples

			The following are representation with the minimal number of terms:
  a(0)=4: 0=7^2-11^2-17^2+19^2;
  a(1)=3: 1=7^2+11^2-13^2;
  a(4)=1: 4=2^2;
  a(5)=2: 5=3^2-2^2;
  a(6)=5: 6=-(2^2)+3^2+7^2+11^2-13^2.
		

Crossrefs

Cf. A088934 (maximum required prime in representation), A048261, A088908, A088909.

A185077 Numbers such that the largest prime factor equals the sum of the squares of the other prime factors.

Original entry on oeis.org

78, 156, 234, 290, 312, 468, 580, 624, 702, 742, 936, 1014, 1160, 1248, 1404, 1450, 1484, 1872, 2028, 2106, 2320, 2496, 2808, 2900, 2968, 3042, 3744, 4056, 4212, 4498, 4640, 4992, 5194, 5616, 5800, 5936, 6084, 6318, 7250, 7488, 8112, 8410, 8424, 8715, 8996, 9126, 9280, 9962
Offset: 1

Views

Author

Michel Lagneau, Feb 18 2011

Keywords

Comments

Observation : it seems that the prime divisors of a majority of numbers n are of the form {2, p, q} with q = 2^2 + p^2, but there exists more rarely numbers with more prime divisors (examples : 8715 = 3*5*7*83; 153230 = 2*5*7*11*199).
Terms which are odd: 8715, 26145, 41349, 43575, 61005, 61971, 78435, ..., . - Robert G. Wilson v, Jul 02 2014

Examples

			8996 is in the sequence because the prime divisors are {2, 13, 173} and 173 = 13^2 + 2^2.
		

Crossrefs

Cf. A071140.
See also the related sequences A048261, A121518.

Programs

  • Maple
    filter:= proc(n)
    local F,f,x;
    F:= numtheory:-factorset(n);
    f:= max(F);
    evalb(f = add(x^2,x=F minus {f}));
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 02 2014
  • Mathematica
    Reap[Do[p = First /@ FactorInteger[n]; If[p[[-1]] == Plus@@(Most[p]^2), Sow[n]], {n, 9962}]][[2, 1]]
    lpfQ[n_]:=With[{f=FactorInteger[n][[;;,1]]},Total[Most[f]^2]==Last[f]]; Select[Range[10000],lpfQ] (* Harvey P. Dale, Jul 28 2024 *)
  • PARI
    isok(n) = {my(f = factor(n)); f[#f~, 1] == sum(i=1, #f~ - 1, f[i, 1]^2);} \\ Michel Marcus, Jul 02 2014

Extensions

Corrected by T. D. Noe, Feb 18 2011

A244637 Primes that are the sum of the squares of distinct primes.

Original entry on oeis.org

13, 29, 53, 83, 173, 179, 199, 227, 293, 347, 367, 373, 419, 439, 463, 467, 487, 491, 541, 563, 569, 587, 607, 613, 617, 641, 653, 659, 709, 727, 733, 751, 809, 823, 827, 829, 853, 857, 877, 881, 919, 953, 971, 977, 991, 997, 1013, 1019, 1021, 1039, 1049
Offset: 1

Views

Author

Michel Marcus, Jul 03 2014

Keywords

Comments

Primes in A048261.
Provide the prime factors of A185077.
A045637 is a subsequence.
There are only 368 primes not in this sequence, the largest being 12601. - Robert Israel, Jul 04 2014

Examples

			13 is in the sequence since it is prime and 13 = 2^2 + 3^2 (2 and 3 are distinct primes).
		

Crossrefs

Programs

  • Mathematica
    nn=10;s={0};Do[p=Prime[n];s=Union[s,s+p^2],{n,nn}];Select[s,(0<#<=Prime[nn]^2)&&PrimeQ[#]&] (* Michel Lagneau, Jul 03 2014 *)

A287965 Smallest number which can be represented as the sum of distinct squares of primes in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

4, 410, 1014, 1494, 1685, 2188, 2335, 2573, 2717, 2863, 3054, 3389, 3224, 3654, 3534, 4014, 4232, 4183, 4254, 4064, 4589, 4618, 4544, 4593, 4903, 5193, 5503, 5215, 5579, 5433, 5455, 5673, 5962, 5983, 6158, 6178, 5744, 5864, 5984, 5913, 6223, 6273, 6678, 6393, 6442, 6513, 6870, 6535, 7038, 7015
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2017

Keywords

Comments

It appears that 1275 is the first k for which a(k) = 0. - Robert Israel, Oct 14 2024

Examples

			a(2) = 410 because 410 = 7^2 + 19^2 = 11^2 + 17^2 and this is the smallest number that can be written as the sum of distinct squares of primes in 2 different ways.
		

Crossrefs

Programs

  • Maple
    N:= 100: # to try with primes up to N
    P:= select(isprime, [2,seq(i,i=3..N,2)]):
    nP:= nops(P):
    S:= mul(1+x^(P[i]^2), i=1..nP):
    M:= 100: # for a(1) .. a(M)
    V:= Vector(M): count:= 0:
    for i from 4 to N^2 while count < M do
      r:= coeff(S,x,i);
      if r >= 1 and r <= M and V[r] = 0 then count:= count+1; V[r]:= i; fi
    od:
    convert(V,list); # Robert Israel, Oct 14 2024

Formula

A111900(a(n)) = n.

A281477 Expansion of Sum_{k>=1} x^(prime(k)^2)/(1 + x^(prime(k)^2)) * Product_{k>=1} (1 + x^(prime(k)^2)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 27 2017

Keywords

Comments

Total number of parts in all partitions of n into distinct squares of primes (A001248).

Examples

			a(38) = 3 because we have [25, 9, 4].
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime, [$1..20]):
    g:= add(x^(p^2)/(1+x^(p^2)),p=Primes)*mul(1+x^(p^2),p=Primes):
    S:= series(g, x, 20^2+1):
    seq(coeff(S,x,n),n=1..20^2); # Robert Israel, Feb 08 2017
  • Mathematica
    nmax = 125; Rest[CoefficientList[Series[Sum[x^Prime[k]^2/(1 + x^Prime[k]^2), {k, 1, nmax}] Product[1 + x^Prime[k]^2, {k, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 + x^(prime(k)^2)) * Product_{k>=1} (1 + x^(prime(k)^2)).

A287962 Positive numbers that are the sum of the squares of distinct Fibonacci numbers (with a single type of 1).

Original entry on oeis.org

1, 4, 5, 9, 10, 13, 14, 25, 26, 29, 30, 34, 35, 38, 39, 64, 65, 68, 69, 73, 74, 77, 78, 89, 90, 93, 94, 98, 99, 102, 103, 169, 170, 173, 174, 178, 179, 182, 183, 194, 195, 198, 199, 203, 204, 207, 208, 233, 234, 237, 238, 242, 243, 246, 247, 258, 259, 262, 263, 267, 268, 271, 272, 441, 442, 445, 446, 450
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 450; f[x_] := Product[1 + x^Fibonacci[k]^2, {k, 2, 10}]; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]] // Rest

A351326 a(n) is the least number k such that k and all larger numbers can be expressed as the sum of n-th powers of distinct primes.

Original entry on oeis.org

7, 17164, 1866001
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 24 2022

Keywords

Crossrefs

Formula

a(n) = A121571(n) + 1.
Showing 1-9 of 9 results.