cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048942 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 1).

Original entry on oeis.org

2, 2, 1, 4, 6, 1, 2, 6, 1, 1, 8, 2, 2, 8, 78, 1, 1, 84, 10, 2, 2, 10, 3, 1, 4, 546, 1, 8, 12, 2, 2, 12, 8, 1, 10, 4, 1062, 3, 1, 7176, 14, 2, 2, 14, 5, 1, 132, 24, 4, 40, 26, 138, 1, 5, 16, 2, 2, 16, 11934, 1, 3, 60, 826, 4, 250, 10, 6, 39, 1, 12, 18, 2, 2, 18
Offset: 1

Views

Author

Keywords

Comments

From Sean A. Irvine, Jul 16 2021: (Start)
These values are computed by Algorithm 5.7.2 in Cohen.
Other methods of computation (see A346420) give different results, with the first difference at n=14.
(End)
a(n) is the smallest positive integer y satisfying the Pell equation x^2 - D*y^2 = +-4, where D = A000037(n). - Jinyuan Wang, Sep 08 2021

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993.

Crossrefs

Programs

  • PARI
    a(n) = my(A, D=n+(1+sqrtint(4*n))\2, d=sqrtint(D), p, q, t, u1, u2, v1, v2); if(d%2==D%2, p=d, p=d-1); u1=-p; u2=2; v1=1; v2=0; q=2; while(v2==0 || q!=t, A=(p+d)\q; t=p; p=A*q-p; if(t==p && v2!=0, return(2*u2*v2/q), t=A*u2+u1; u1=u2; u2=t; t=A*v2+v1; v1=v2; v2=t; t=q; q=(D-p^2)/q)); (u1*v2+u2*v1)/q; \\ Jinyuan Wang, Sep 08 2021

Extensions

Name edited by Michel Marcus, Jun 26 2020
Entry revised by Sean A. Irvine, Jul 16 2021

A346419 a(n) is twice the coefficient of 1 in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2).

Original entry on oeis.org

2, 4, 1, 10, 16, 2, 6, 20, 4, 3, 30, 8, 8, 2, 340, 1, 5, 394, 48, 10, 10, 4, 16, 5, 22, 3040, 2, 46, 70, 12, 12, 74, 50, 6, 64, 26, 6964, 20, 1, 48670, 96, 4, 2, 100, 3, 7, 10, 178, 30, 302, 198, 1060, 8, 39, 126, 16, 16, 130, 97684, 8, 25, 502, 6960, 2, 2136, 86, 4, 340, 9, 106, 160, 1, 18, 164, 5, 9, 20810
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nonSquares = Select[Range[72], !IntegerQ[Sqrt[#]]& ]; 2*NumberFieldFundamentalUnits[Sqrt[#]][[1, 2, 1]] & /@ nonSquares (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    for(n=1,30,if(!issquare(n),print1(abs(2*polcoeff(lift(bnfinit(x^2-n).fu[1]),0)),","))) /* Ralf Stephan, Sep 18 2013; updated by Michel Marcus, Jun 25 2020 */

A346420 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2).

Original entry on oeis.org

2, 2, 1, 4, 6, 2, 2, 6, 2, 1, 8, 2, 2, 2, 78, 1, 1, 84, 10, 4, 2, 2, 6, 1, 4, 546, 2, 8, 12, 2, 2, 12, 8, 2, 10, 4, 1062, 6, 1, 7176, 14, 2, 2, 14, 1, 1, 4, 24, 8, 40, 26, 138, 2, 5, 16, 6, 2, 16, 11934, 2, 3, 60, 826, 2, 250, 10, 2, 78, 1, 12, 18, 1, 2, 18, 1, 1, 2244, 6, 84
Offset: 1

Views

Author

Keywords

Comments

The radical part is actually sqrt(A007913(A000037(n))) where A007913(m) is the squarefree part of m. - Michel Marcus, Jun 26 2020
How does this sequence differ from A048942? The definitions of both sequences are identical, but the second comment in A048942 states the terms differ from n = 14 onwards. - Felix Fröhlich, Jun 16 2022

Crossrefs

Programs

  • PARI
    f(n) = {if (issquare(n), return (0)); if (!issquarefree(n), m = core(n), m = n); my(u = abs(2*polcoeff(lift(bnfinit(x^2-m, 1).fu[1]), 0))); if (u^2==1, return (1)); if (u^2==4, return (sqrtint((u^2+4)/m));); if (u^2 < 4, return((u^2+4)/n)); my(v2 = [(u^2-4)/m, (u^2+4)/m]); sqrtint(vecmin(select(x->denominator(x)==1, v2)));}
    lista(nn) = apply(f, select(x->!issquare(x), [1..nn])); \\ Michel Marcus, Jun 25 2020; corrected Jun 16 2022

A107999 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

Original entry on oeis.org

37, 101, 141, 189, 197, 269, 325, 333, 349, 373, 381, 389, 405, 485, 557, 573, 677, 701, 709, 757, 781, 813, 829, 877, 885, 901, 909, 925, 933, 973, 997, 1053, 1149, 1157, 1173, 1213, 1269, 1293, 1301, 1325, 1389, 1405, 1421, 1445, 1485, 1605, 1613, 1701, 1717
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.

Crossrefs

Extensions

More terms from Jinyuan Wang, Sep 08 2021

A108160 Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

Original entry on oeis.org

37, 101, 141, 197, 269, 349, 373, 381, 389, 485, 557, 573, 677, 701, 709, 757, 781, 813, 829, 877, 885, 901, 933, 973, 997, 1149, 1157, 1173, 1213, 1293, 1301, 1389, 1405, 1605, 1613, 1717, 1757, 1765, 1861, 1885, 1893, 1901, 1909, 1949, 1973, 2069, 2077, 2093
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.

Crossrefs

Extensions

More terms from Jinyuan Wang, Sep 08 2021
Showing 1-5 of 5 results.