cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228912 a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 19958400, 618710400, 14270256000, 273158645760, 4595022432000, 70309810771200, 1000944296352000, 13467262000832640, 173201547619900800, 2147373231974006400, 25832386565857872000, 303056981918271947520, 3481253462769108364800
Offset: 0

Views

Author

Keywords

Comments

Calculates the tenth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y = 1/[1+exp(-x)].

Crossrefs

Tenth column of results of A163626.
Essentially 362880*A049435.
Cf. A228910 (with more crossrefs), A228911.

Programs

  • Mathematica
    Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
  • PARI
    a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1

Formula

G.f.: 362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..10} (-1)^(10-k)*binomial(10-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017

Extensions

Offset corrected by Vaclav Kotesovec, Dec 16 2014

A049434 Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.

Original entry on oeis.org

1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053, 20415995028, 189036065010, 1709751003480, 15170932662679, 132511015347084, 1142399079991620, 9741955019900400, 82318282158320505, 690223721118368580, 5749622251945664950
Offset: 8

Views

Author

Keywords

References

Crossrefs

Programs

Formula

G.f.: x^8/product_{k=1..8} (1-k*x).
E.g.f.: ((exp(x)-1)^8)/8!.
a(n) = det(|s(i+8,j+7)|, 1 <= i,j <= n-8), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013

A133132 Number of surjections from an n-element set to a ten-element set.

Original entry on oeis.org

3628800, 199584000, 6187104000, 142702560000, 2731586457600, 45950224320000, 703098107712000, 10009442963520000, 134672620008326400, 1732015476199008000, 21473732319740064000, 258323865658578720000
Offset: 10

Views

Author

Mohamed Bouhamida, Dec 16 2007

Keywords

Crossrefs

Programs

  • Magma
    [10^n-10*9^n+45*8^n-120*7^n+210*6^n-252*5^n+210*4^n-120*3^n+45*2^n-10: n in [10..30]]; // Vincenzo Librandi, Apr 11 2012
  • Mathematica
    With[{nn=30},Drop[CoefficientList[Series[(Exp[x]-1)^10,{x,0,nn}],x] Range[0,nn]!,10]] (* Harvey P. Dale, Sep 01 2016 *)
  • PARI
    sum(k=1,10,(-1)^(10-k)*binomial(10,k)*k^n)
    

Formula

a(n) = 10^n-10*9^n+45*8^n-120*7^n+210*6^n-252*5^n+210*4^n-120*3^n+45*2^n-10.
a(n) = A049435(n) * 10!. - Max Alekseyev, Nov 13 2009
G.f.: 3628800*x^10/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x)-1)^10. - Alois P. Heinz, May 17 2016

Extensions

More terms from Max Alekseyev, Nov 13 2009
Formula corrected by Charles R Greathouse IV, Mar 07 2010

A245602 Triangle read by rows: the negative terms of A163626.

Original entry on oeis.org

-1, -3, -7, -6, -15, -60, -31, -390, -120, -63, -2100, -2520, -127, -10206, -31920, -5040, -255, -46620, -317520, -181440, -511, -204630, -2739240, -3780000, -362880, -1023, -874500, -21538440, -59875200, -19958400, -2047
Offset: 0

Views

Author

Paul Curtz, Dec 17 2014

Keywords

Comments

These numbers a(n) are the companion of A249163(n).
Consider the Worpitzky fractions A163626(n)/A002260(n) yielding the second Bernoulli numbers A164555(n)/A027642(n):
1,
1, -1/2,
1, -3/2, +2/3,
1, -7/2, +12/3, -6/4,
etc.
From the second row on, the sum of the numerators is 0.
The absolute values of every row of the numerators triangle A163626 are 1, 2, 6, 26, ... = A000629(n).
a(n) triangle is shifted. It starts from second row and second column of triangle above.
-1,
-3,
-7, -6,
-15, -60,
-31, -390, -120,
-63, -2100, -2520,
-127, -10206, -31920, -5040,
-255, -46620, -317520, -181440,
etc.
Sum of successive rows: -1, -3, -13, -75, ... = -A000670(n+1).
Successive columns: A000225, A028244, from the Stirling numbers of second kind S(n,2), S(n,4), S(n,6), S(n,8), S(n,10), ... . See A000770, A032180, A049434, A228910, A049435, A228912, A008277.

Crossrefs

Programs

  • Mathematica
    Select[ Table[ (-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten, Negative] (* Jean-François Alcover, Dec 26 2014 *)

A373173 Triangle read by rows: the exponential almost-Riordan array ( exp(exp(x)-1) | exp(x), exp(x)-1 ).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 1, 3, 1, 15, 1, 7, 6, 1, 52, 1, 15, 25, 10, 1, 203, 1, 31, 90, 65, 15, 1, 877, 1, 63, 301, 350, 140, 21, 1, 4140, 1, 127, 966, 1701, 1050, 266, 28, 1, 21147, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 115975, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Examples

			The triangle begins:
    1;
    1, 1;
    2, 1,  1;
    5, 1,  3,  1;
   15, 1,  7,  6,  1;
   52, 1, 15, 25, 10,  1;
  203, 1, 31, 90, 65, 15, 1;
  ...
		

Crossrefs

Cf. A000012 (k=1), A000225, A000392 (k=3), A000453 (k=4), A000481 (k=5), A000770 (k=6), A000771 (k=7), A049394 (k=8), A049435 (k=10), A049447 (k=9).
Triangle A008277 with 1st column A000110.

Programs

  • Mathematica
    T[n_,0]:=n!SeriesCoefficient[Exp[Exp[x]-1],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[Exp[x](Exp[x]-1)^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

Formula

T(n,0) = n! * [x^n] exp(exp(x)-1); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] exp(x)*(exp(x)-1)^(k-1).
T(n,2) = A000225(n-1) for n > 1.
Showing 1-5 of 5 results.