cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A049711 a(n) = n - prevprime(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6
Offset: 3

Views

Author

Keywords

Comments

All runs end in even numbers at a(p), new highs are found at A000101 and the increasing gap size is A005250. - Robert G. Wilson v, Dec 07 2001
All terms are positive since here the variant 2 (A151799(n) < n) of the prevprime function is used, rather than the variant 1 (A007917(n) <= n). - M. F. Hasler, Sep 09 2015

Crossrefs

Programs

  • Maple
    A049711 := n-> n-prevprime(n);
  • Mathematica
    PrevPrim[n_] := Block[ {k = n - 1}, While[ !PrimeQ[k], k-- ]; Return[k]]; Table[ n - PrevPrim[n], {n, 3, 100} ]
    Array[#-NextPrime[#,-1]&,100,3] (* Harvey P. Dale, Dec 07 2011 *)
  • PARI
    A049711(n)=n-precprime(n-1) \\ M. F. Hasler, Sep 09 2015

Formula

a(n) = A064722(n-1) + 1. - Pontus von Brömssen, Jul 31 2022

A060308 Largest prime <= 2n.

Original entry on oeis.org

2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131
Offset: 1

Views

Author

Labos Elemer, Mar 27 2001

Keywords

Comments

a(n) is the smallest k such that C(2n,n) divides k!. - Benoit Cloitre, May 30 2002
a(n) is largest prime factor of C(2n,n) = (2n)!/(n!)^2. - Alexander Adamchuk, Jul 11 2006
a(n) is also the largest prime in the interval [n,2n]. - Peter Luschny, Mar 04 2011
Odd prime p repeats (q-p)/2 times, where q > p is the next prime. In particular, every lesser of twin primes (A001359) occurs 1 time, every lesser more than 3 of cousin primes (A023200) occurs 2 times, etc. - Vladimir Shevelev, Mar 12 2012

Examples

			n=1, 2n=2, p(1) = 2 = a(1) is the largest prime not exceeding 2.
		

Crossrefs

Apart from initial term, same as A060265.
Cf. A007917 (largest prime <= n), A005843 (2n).

Programs

Formula

a(n) = Max[FactorInteger[(2n)!/(n!)^2]]. - Alexander Adamchuk, Jul 11 2006
a(n) = A006530(A000142(2*n)) and a(n) = A006530(A056040(2*n)). - Peter Luschny, Mar 04 2011
a(n) ~ 2*n as n tends to infinity. - Vladimir Shevelev, Mar 12 2012
a(n) = A007917(A005843(n)) = A226078(n, A067434(n)). - Reinhard Zumkeller, May 25 2013

Extensions

More terms from Alexander Adamchuk, Jul 11 2006

A060264 First prime after 2n.

Original entry on oeis.org

2, 3, 5, 7, 11, 11, 13, 17, 17, 19, 23, 23, 29, 29, 29, 31, 37, 37, 37, 41, 41, 43, 47, 47, 53, 53, 53, 59, 59, 59, 61, 67, 67, 67, 71, 71, 73, 79, 79, 79, 83, 83, 89, 89, 89, 97, 97, 97, 97, 101, 101, 103, 107, 107, 109, 113, 113, 127, 127, 127, 127, 127, 127, 127, 131
Offset: 0

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Comments

Conjecture: for n > 2, this is the least prime p such that 1^2, 2^2, 3^2, ..., n^2 are distinct mod p. Checked to 10^4. - Charles R Greathouse IV, Dec 03 2022

Crossrefs

Programs

Formula

a(n) = A151800(2*n). - Reinhard Zumkeller, Nov 15 2013

A060265 Largest prime less than 2n.

Original entry on oeis.org

3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131
Offset: 2

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Comments

a(n) = A007917(2*n) = A255313(n-1,1) = A255316(n-1,1) = A006530(A255427(n)). - Reinhard Zumkeller, Feb 22 2015

Crossrefs

Apart from initial term, same as A060308.

Programs

  • Haskell
    a060265 = a007917 . (* 2)  -- Reinhard Zumkeller, Feb 22 2015
  • Maple
    seq (prevprime(2*i+1), i=2..256);
  • Mathematica
    Table[NextPrime[2 n, -1], {n, 2, 66}] (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    a(n) = precprime(2*n-1) \\ Harry J. Smith, Jul 03 2009
    

A060266 Difference between 2n and the following prime.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 5, 3, 1, 1, 5, 3, 1, 3, 1, 1, 3, 1, 5, 3, 1, 5, 3, 1, 1, 5, 3, 1, 3, 1, 1, 5, 3, 1, 3, 1, 5, 3, 1, 7, 5, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 13, 11, 9, 7, 5, 3, 1, 3, 1, 5, 3, 1, 1, 9, 7, 5, 3, 1, 1, 5, 3, 1, 5, 3, 1, 3, 1, 5, 3, 1, 5, 3, 1, 1, 9, 7, 5, 3, 1, 1, 3, 1, 1, 11, 9, 7, 5
Offset: 1

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(nextprime(2*i)-2*i,i=1..256)];
  • Mathematica
    d2n[n_]:=Module[{c=2n},NextPrime[c]-c]; Array[d2n,120] (* Harvey P. Dale, May 14 2011 *)
    Table[NextPrime@ # - # &[2 n], {n, 120}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    a(n) = nextprime(2*n+1) - 2*n; \\ Michel Marcus, Feb 19 2017

Formula

Conjecture: Limit_{n->oo} (Sum_{k=1..n} a(k)) / (Sum_{k=1..n} log(2*k)) = 1. - Alain Rocchelli, Oct 24 2023

A118750 a(n) = product[k=1..n] P(k), where P(k) is the largest prime <= 3*k. a(n) = product[k=1..n] A118749(k).

Original entry on oeis.org

3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 2565568005, 74401472145, 2306445636495, 71499814731345, 2645493145059765, 108465218947450365, 4664004414740365695, 219208207492797187665, 10302785752161467820255
Offset: 1

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Comments

Differs from (after first term) A048599 "Partial products of the sequence (A001097) of twin primes" after 8th term. Differs from (after first term) A070826 "One half of product of first n primes A000040" after 9th term. Analogous to A118455 a(1)=1. a(n) = product{k=1..n} P(k), where P(k) is the largest prime <= k.

Crossrefs

A060268 Distance of 2n from the closest prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 5, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 3, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 5, 3, 1, 1, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1
Offset: 2

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Examples

			n=13, 2n=26 surrounded by 23 and 29 which are from 26 in equal distance of 3 and min{3,3}=3=a(13).
		

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(min(nextprime(2*i)-2*i, 2*i-prevprime(2*i)), i=2...256)];
  • Mathematica
    a[n_] := Min[NextPrime[2*n] - 2*n, 2*n - NextPrime[2*n, -1]]; Array[a, 100, 2] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n) = min(2*n - precprime(2*n-1), nextprime(2*n+1) - 2*n); \\ Michel Marcus, Sep 16 2020

Formula

a(n) = min(A049653(n), A060266(n)). - Michel Marcus, Sep 16 2020

A049613 a(n) = 2n - (largest prime < 2n-2).

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 3, 5, 7, 3, 5, 3, 5, 7, 3, 5, 7, 9, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 9, 11, 13, 15, 3, 5, 3, 5, 7, 3, 3, 5, 7, 9, 11, 3, 3, 5, 7, 3, 5, 7, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5
Offset: 3

Views

Author

David M. Elder (elddm(AT)rhodes.edu)

Keywords

Examples

			a(14)=28 - (largest prime < 26) = 28 - 23 = 5.
		

Crossrefs

Programs

  • Haskell
    a049613 n = 2 * n - a007917 (2 * n - 2)
    -- Reinhard Zumkeller, Jan 02 2015
  • Mathematica
    Table[2n-NextPrime[2n-2,-1],{n,3,100}] (* Harvey P. Dale, Aug 16 2011 *)

Formula

a(n) <= A002373(n). - R. J. Mathar, Mar 19 2008
a(n) = 2*n - A007917(2*n-2). - Reinhard Zumkeller, Jan 02 2015

A049716 a(n) = 2*n + 1 - prevprime(2*n + 1).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 6, 2, 2, 4, 6, 2, 4, 2, 2, 4, 2, 4, 6, 2, 4, 6, 2, 2, 4, 6, 2, 4, 2, 2, 4, 6, 2, 4, 2, 4, 6, 2, 4, 6, 8, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 6, 8, 10, 12, 14, 2, 4, 2, 4, 6, 2, 2, 4, 6, 8, 10, 2, 2, 4, 6, 2, 4, 6, 2, 4, 2, 4, 6, 2, 4, 6, 2, 2, 4
Offset: 1

Views

Author

Keywords

Examples

			n:     1  2  3  4  5  6  7  8 ...
2n+1:  3  5  7  9 11 13 15 17 ...
pp:    2  3  5  7  7 11 13 13 ...
diff:  1  2  2  2  4  2  2  4 ...
		

Crossrefs

Programs

  • Maple
    seq(2*n+1-prevprime(2*n+1), n=1..100); # Robert Israel, Jul 05 2018
  • Mathematica
    Table[2n+1-NextPrime[2n+1,-1],{n,100}] (* Harvey P. Dale, Sep 21 2013 *)
  • PARI
    a(n) = 2*n+1-precprime(2*n); \\ Michel Marcus, Jul 06 2018

Formula

a(n) = A049711(2*n+1). - R. J. Mathar, Oct 26 2015

A049847 a(n) = (2*n + 1 - prevprime(2*n+1))/2.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 5, 6, 7, 1, 2, 1, 2, 3, 1, 1, 2, 3, 4, 5, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 4
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2n+1-NextPrime[2n+1,-1])/2,{n,2,100}] (* Harvey P. Dale, Jul 25 2015 *)
Showing 1-10 of 14 results. Next