A050407 a(n) = n*(n^2 - 6*n + 11)/6.
0, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 121, 166, 221, 287, 365, 456, 561, 681, 817, 970, 1141, 1331, 1541, 1772, 2025, 2301, 2601, 2926, 3277, 3655, 4061, 4496, 4961, 5457, 5985, 6546, 7141, 7771, 8437, 9140, 9881, 10661, 11481, 12342, 13245, 14191
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kassie Archer and Aaron Geary, Descents in powers of permutations, arXiv:2406.09369 [math.CO], 2024.
- Colin Defant, Motzkin intervals and valid hook configurations, arXiv preprint arXiv:1904.10451 [math.CO], 2019.
- Robert DiSario, Problem 10931, Amer. Math. Monthly, 109 (No. 3, 2002), 298.
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Nurul Hilda Syani Putri, Mashadi, and Sri Gemawati, Sequences from heptagonal pyramid corners of integer, International Mathematical Forum, Vol. 13, 2018, no. 4, 193-200.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(n^2-6*n+11)/6); # G. C. Greubel, Oct 30 2019
-
Haskell
a050407 n = n * (n ^ 2 - 6 * n + 11) `div` 6 -- Reinhard Zumkeller, Oct 17 2014
-
Magma
I:=[0, 1, 1, 1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 22 2012
-
Maple
seq(binomial(n-1, 3) + 1, n = 0..46); # Zerinvary Lajos, Jul 24 2006
-
Mathematica
Table[n*(n^2-6*n+11)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *) LinearRecurrence[{4,-6,4,-1},{0,1,1,1},50] (* Vincenzo Librandi, Jun 22 2012 *) Join[{0,1,1},Nest[Accumulate,Range[0,50],2]+1] (* Harvey P. Dale, Sep 23 2017 *)
-
PARI
a(n)=n*(n^2-6*n+11)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
Python
for n in range(0,50): print(n*(n**2 - 6*n + 11)/6, end=', ') # Stefano Spezia, Jan 05 2019
-
Sage
[n*(n^2-6*n+11)/6 for n in (0..50)] # G. C. Greubel, Oct 30 2019
Formula
From Paul Barry, Jul 21 2003: (Start)
Diagonal sums of square array A086460 (starting 1, 1, 2, ...).
a(n+2) = 1 + n*(n+1)*(n-1)/6 = Sum_{k=0..n} (0^k + (n-k)*k). (End)
a(n) = binomial(n-1,3) + binomial(n-1,0), n>=0. - Zerinvary Lajos, Jul 24 2006
G.f.: x*(1-3*x+3*x^2)/(1-x)^4. - Colin Barker, May 06 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 22 2012
a(n) = A000292(n-3) + 1, n > 2. - Ivan N. Ianakiev, Apr 27 2014
E.g.f.: x*(6 - 3*x + x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019
a(n+2) = 1 + Sum_{i=3..4} binomial(n, i-1) for n >= 1. - Jessica A. Tomasko, Nov 15 2022
Comments