A263340
Triangle read by rows: T(n,k) is the number of graphs with n vertices containing k triangles.
Original entry on oeis.org
1, 1, 2, 3, 1, 7, 2, 1, 0, 1, 14, 7, 5, 2, 3, 1, 0, 1, 0, 0, 1, 38, 23, 28, 14, 18, 9, 7, 5, 4, 1, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 107, 102, 141, 117, 123, 92, 80, 63, 49, 35, 35, 23, 15, 17, 10, 4, 9, 5, 2, 3, 3, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1;
1;
2;
3,1;
7,2,1,0,1;
14,7,5,2,3,1,0,1,0,0,1;
38,23,28,14,18,9,7,5,4,1,4,1,1,1,0,0,1,0,0,0,1;
...
-
Table[Table[Count[Table[Tr[MatrixPower[AdjacencyMatrix[GraphData[{n, i}]], 3]]/6, {i, 1, NumberOfGraphs[n]}], k], {k, 0, Binomial[n, 3]}], {n, 1, 7}] (* Geoffrey Critzer, Apr 13 2017 *)
A372170
Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k triangles, 0 <= k <= binomial(n,3).
Original entry on oeis.org
1, 1, 2, 7, 1, 41, 16, 6, 0, 1, 388, 290, 195, 70, 40, 30, 0, 10, 0, 0, 1, 5789, 6980, 6910, 4560, 3030, 2292, 1230, 780, 600, 180, 236, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 133501, 235270, 313705, 302505, 260890, 222509, 174615, 126780, 102970, 67165, 50134, 37485, 20370, 17990, 11445, 6552, 4515, 3570, 1680, 1785, 154, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1
1
2
7 1
41 16 6 0 1
388 290 195 70 40 30 0 10 0 0 1
...
For example, the T(4,1) = 16 graphs are:
12-13-23
12-14-24
13-14-34
23-24-34
12-13-14-23
12-13-14-24
12-13-14-34
12-13-23-24
12-13-23-34
12-14-23-24
12-14-24-34
12-23-24-34
13-14-23-34
13-14-24-34
13-23-24-34
14-23-24-34
For all cycles (not just triangles) we have
A372176, covering
A372175.
-
cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}]&&MemberQ[y,{#[[1]],#[[3]]}]&&MemberQ[y,{#[[2]],#[[3]]}]&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[cys[#]]==k&]],{n,0,5},{k,0,Binomial[n,3]}]
A372167
Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).
Original entry on oeis.org
1, 0, 1, 3, 1, 22, 12, 6, 0, 1, 237, 220, 165, 70, 35, 30, 0, 10, 0, 0, 1, 3961, 5460, 5830, 4140, 2805, 2112, 1230, 720, 600, 180, 230, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 99900, 191975, 269220, 272055, 240485, 207095, 166005, 121530, 98770, 65905, 48503, 37065, 20055, 17570, 11445, 6552, 4410, 3570, 1680, 1785, 147, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1
0
1
3 1
22 12 6 0 1
237 220 165 70 35 30 0 10 0 0 1
...
Row k = 4 counts the following graphs:
12-34 12-13-14-23 12-13-14-23-24 . 12-13-14-23-24-34
13-24 12-13-14-24 12-13-14-23-34
14-23 12-13-14-34 12-13-14-24-34
12-13-14 12-13-23-24 12-13-23-24-34
12-13-24 12-13-23-34 12-14-23-24-34
12-13-34 12-14-23-24 13-14-23-24-34
12-14-23 12-14-24-34
12-14-34 12-23-24-34
12-23-24 13-14-23-34
12-23-34 13-14-24-34
12-24-34 13-23-24-34
13-14-23 14-23-24-34
13-14-24
13-23-24
13-23-34
13-24-34
14-23-24
14-23-34
14-24-34
12-13-24-34
12-14-23-34
13-14-23-24
For all cycles (not just triangles) we have
A372175, non-covering
A372176.
-
cys[y_]:=Select[Subsets[Union@@y,{3}], MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n,0,5},{k,0,Binomial[n,3]}]
A372173
Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).
Original entry on oeis.org
1, 0, 1, 1, 1, 4, 1, 1, 0, 1, 7, 5, 4, 2, 2, 1, 0, 1, 0, 0, 1, 24, 16, 23, 12, 15, 8, 7, 4, 4, 1, 3, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 69, 79, 113, 103, 105, 83, 73, 58, 45, 34, 31, 22, 14, 16, 10, 4, 8, 5, 2, 3, 2, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1
0
1
1 1
4 1 1 0 1
7 5 4 2 2 1 0 1 0 0 1
A062748
Fourth column (r=3) of FS(3) staircase array A062745.
Original entry on oeis.org
3, 9, 19, 34, 55, 83, 119, 164, 219, 285, 363, 454, 559, 679, 815, 968, 1139, 1329, 1539, 1770, 2023, 2299, 2599, 2924, 3275, 3653, 4059, 4494, 4959, 5455, 5983, 6544, 7139, 7769, 8435, 9138, 9879, 10659, 11479, 12340, 13243, 14189, 15179, 16214, 17295, 18423
Offset: 0
G.f. = 3 + 9*x + 19*x^2 + 34*x^3 + 55*x^4 + 83*x^5 + 119*x^6 + 164*x^7 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Guillaume Aupy and Julien Herrmann. Periodicity in optimal hierarchical checkpointing schemes for adjoint computations. Optimization Methods and Software, Volume 32, 2017 - Issue 3. Preprint
- D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[Binomial(n+4,3) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
-
seq(((n^3-n)/6)-1,n=3..40); # Zerinvary Lajos, May 05 2007
-
LinearRecurrence[{4,-6,4,-1},{3,9,19,34},40] (* Harvey P. Dale, Jan 13 2019 *)
Binomial[4+Range[0,50], 3] -1 (* G. C. Greubel, Apr 22 2024 *)
-
{a(n) = binomial(n+4, 3) - 1}; /* Michael Somos, Jan 28 2018 */
-
[binomial(n+4,3) - 1 for n in range(51)] # G. C. Greubel, Apr 22 2024
A233440
Triangle read by rows: T(n, k) = n*binomial(n, k)*A000757(k), 0 <= k <= n.
Original entry on oeis.org
0, 1, 0, 2, 0, 0, 3, 0, 0, 3, 4, 0, 0, 16, 4, 5, 0, 0, 50, 25, 40, 6, 0, 0, 120, 90, 288, 216, 7, 0, 0, 245, 245, 1176, 1764, 1603, 8, 0, 0, 448, 560, 3584, 8064, 14656, 13000, 9, 0, 0, 756, 1134, 9072, 27216, 74196, 131625, 118872, 10, 0, 0, 1200, 2100, 20160, 75600, 274800, 731250, 1320800, 1202880
Offset: 0
For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
-
T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
A099567
Riordan array (1/(1-x-x^3), 1/(1-x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0
Rows begin:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
3, 5, 6, 4, 1;
4, 8, 11, 10, 5, 1;
6, 12, 19, 21, 15, 6, 1;
9, 18, 31, 40, 36, 21, 7, 1;
13, 27, 49, 71, 76, 57, 28, 8, 1;
19, 40, 76, 120, 147, 133, 85, 36, 9, 1;
28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1;
-
T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
[[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
-
T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
-
@CachedFunction
def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022
A144903
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0
Square array (A(n,k)) begins:
0, 0, 0, 0, 0, 0, 0 ... A000004;
1, 1, 1, 1, 1, 1, 1 ... A000012;
0, 1, 2, 3, 4, 5, 6 ... A001477;
0, 1, 3, 6, 10, 15, 21 ... A000217;
1, 2, 5, 11, 21, 36, 57 ... A050407;
1, 3, 8, 19, 40, 76, 133 ... ;
1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 1;
0, 1, 3, 3, 2, 1;
0, 1, 4, 6, 5, 3, 1;
0, 1, 5, 10, 11, 8, 4, 2;
0, 1, 6, 15, 21, 19, 12, 6, 3;
-
A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
[A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
-
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
-
(* First program *)
a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
(* Second Program *)
A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
-
def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
def A144903(n,k):
if (k==0): return 0
else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
A360010
First part of the n-th weakly decreasing triple of positive integers sorted lexicographically. Each n > 0 is repeated A000217(n) times.
Original entry on oeis.org
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8
Offset: 1
Triples begin: (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), (3,3,3), ...
For pairs instead of triples we have
A002024.
The second instead of first part is
A194848.
The third instead of first part is
A333516.
Concatenating all the triples gives
A360240.
-
nn=9;First/@Select[Tuples[Range[nn],3],GreaterEqual@@#&]
-
from math import comb
from sympy import integer_nthroot
def A360010(n): return (m:=integer_nthroot(6*n,3)[0])+(n>comb(m+2,3)) # Chai Wah Wu, Nov 04 2024
A014370
If n = binomial(b,2) + binomial(c,1), b > c >= 0 then a(n) = binomial(b+1,3) + binomial(c+1,2).
Original entry on oeis.org
1, 2, 4, 5, 7, 10, 11, 13, 16, 20, 21, 23, 26, 30, 35, 36, 38, 41, 45, 50, 56, 57, 59, 62, 66, 71, 77, 84, 85, 87, 90, 94, 99, 105, 112, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 286
Offset: 1
The triangle starts:
1
2 4
5 7 10
11 13 16 20
21 23 26 30 35
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1993, p. 159.
-
a := 0: for i from 1 to 15 do for j from 1 to i do a := a+j: printf(`%d,`,a); od:od:
-
A014370[n_, k_] := Binomial[n + 1, 3] + Binomial[k + 1, 2];
Table[A014370[n, k], {n, 12}, {k, n}] (* Paolo Xausa, Mar 11 2025 *)
Showing 1-10 of 21 results.
Comments