cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A321836 a(n) = Sum_{d|n, n/d==1 mod 4} d^12 - Sum_{d|n, n/d==3 mod 4} d^12.

Original entry on oeis.org

1, 4096, 531440, 16777216, 244140626, 2176778240, 13841287200, 68719476736, 282429005041, 1000000004096, 3138428376720, 8916083671040, 23298085122482, 56693912371200, 129746094281440, 281474976710656, 582622237229762, 1156829204647936
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321543 - A321565, A321807 - A321835 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, A321834, A321835, this sequence.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^12 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(12*e+12) - s[p]^(e+1))/(p^12 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n, d, if(bittest(n\d,0),(2-n\d%4)*d^12)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(12*e+12) - A101455(p)^(e+1))/(p^12 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^13 / 13, where c = beta(13) = 540553*Pi^13/1569592442880 = 0.999999373583..., and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^12*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A050469 a(n) = Sum_{ d divides n, n/d=1 mod 4} d - Sum_{ d divides n, n/d=3 mod 4} d.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 6, 8, 7, 12, 10, 8, 14, 12, 12, 16, 18, 14, 18, 24, 12, 20, 22, 16, 31, 28, 20, 24, 30, 24, 30, 32, 20, 36, 36, 28, 38, 36, 28, 48, 42, 24, 42, 40, 42, 44, 46, 32, 43, 62, 36, 56, 54, 40, 60, 48, 36, 60, 58, 48, 62, 60, 42, 64, 84, 40
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative with a(p^e)=p^e if p=2, (p^(e+1)-1)/(p-1) if p==1 (mod 4), else (p^(e+1)+(-1)^e)/(p+1). - Michael Somos, May 02 2005
Multiplicative because it is the Dirichlet convolution of A000027 = n and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Crossrefs

Programs

  • Mathematica
    max = 70; s = Sum[n*x^(n-1)/(1+x^(2*n)), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 02 2015 *)
    f[p_, e_] := Which[p == 2, p^e, Mod[p, 4] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 4] == 3, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 06 2022 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*((n/d%4==1)-(n/d%4==3))))
    
  • PARI
    {a(n)=local(A,p,e); if(n<2, n==1, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, p^e, if(p%4==1, (p^(e+1)-1)/(p-1), (p^(e+1)+(-1)^e)/(p+1)))))) } /* Michael Somos, May 02 2005 */
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,k*x^k/(1+x^(2*k)),x*O(x^n)),n))

Formula

G.f.: Sum_{n>=1} n*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
L.g.f.: Sum_{k>=1} arctan(x^k). - Ilya Gutkovskiy, Dec 16 2019
O.g.f.: Sum_{n >= 1} (-1)^(n+1) * x^(2*n-1)/(1 - x^(2*n-1))^2. - Peter Bala, Jan 04 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 4)} 1/(1-1/p^2) * Product_{primes p == 3 (mod 4)} 1/(1+1/p^2) = (1/2) * A175647 / A243381 = A006752/2 = 0.4579827970... . - Amiram Eldar, Nov 06 2022, Nov 05 2023
a(n) = Sum_{d|n} (n/d)*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

A000141 Number of ways of writing n as a sum of 6 squares.

Original entry on oeis.org

1, 12, 60, 160, 252, 312, 544, 960, 1020, 876, 1560, 2400, 2080, 2040, 3264, 4160, 4092, 3480, 4380, 7200, 6552, 4608, 8160, 10560, 8224, 7812, 10200, 13120, 12480, 10104, 14144, 19200, 16380, 11520, 17400, 24960, 18396, 16440, 24480, 27200
Offset: 0

Views

Author

Keywords

Comments

The relevant identity for the o.g.f. is theta_3(x)^6 = 1 + 16*Sum_{j>=1} j^2*x^j/(1 + x^(2*j)) - 4*Sum_{j >=0} (-1)^j*(2*j+1)^2 *x^(2*j+1)/(1 - x^(2*j+1)), See the Hardy-Wright reference, p. 315, first equation. - Wolfdieter Lang, Dec 08 2016

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=6 of A122141 and of A319574, 6th column of A286815.

Programs

  • Haskell
    a000141 0 = 1
    a000141 n = 16 * a050470 n - 4 * a002173 n
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Maple
    (sum(x^(m^2),m=-10..10))^6;
    # Alternative:
    A000141list := proc(len) series(JacobiTheta3(0, x)^6, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000141list(40); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[6, n], {n, 0, 40}] (* Ray Chandler, Dec 06 2006 *)
    SquaresR[6,Range[0,50]] (* Harvey P. Dale, Aug 26 2011 *)
    EllipticTheta[3, 0, z]^6 + O[z]^40 // CoefficientList[#, z]& (* Jean-François Alcover, Dec 05 2019 *)
  • Python
    from math import prod
    from sympy import factorint
    def A000141(n):
        if n == 0: return 1
        f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(n).items()]
        return (prod((p**(e+1<<1)-c)//(p**2-c) for p, e, c in f)<<2)-prod(((k:=p**2*c)**(e+1)-1)//(k-1) for p, e, c in f)<<2 # Chai Wah Wu, Jun 21 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*6)
    Q.representation_number_list(40) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(z)^6.
a(n) = 4( Sum_{ d|n, d ==3 mod 4} d^2 - Sum_{ d|n, d ==1 mod 4} d^2 ) + 16( Sum_{ d|n, n/d ==1 mod 4} d^2 - Sum_{ d|n, n/d ==3 mod 4} d^2 ) [Jacobi]. [corrected by Sean A. Irvine, Oct 01 2009]
a(n) = 16*A050470(n) - 4*A002173(n). - Michel Marcus, Dec 15 2012
a(n) = (12/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A050468 a(n) = Sum_{d|n, n/d=1 mod 4} d^4 - Sum_{d|n, n/d=3 mod 4} d^4.

Original entry on oeis.org

1, 16, 80, 256, 626, 1280, 2400, 4096, 6481, 10016, 14640, 20480, 28562, 38400, 50080, 65536, 83522, 103696, 130320, 160256, 192000, 234240, 279840, 327680, 391251, 456992, 524960, 614400, 707282, 801280, 923520, 1048576, 1171200
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Dirichlet convolution of A000583 = n^4 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005
Called E'_4(n) by Hardy.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + 16*x^2 + 80*x^3 + 256*x^4 + 626*x^5 + 1280*x^6 + 2400*x^7 + 4096*x^8 + ...
		

References

  • Emil Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 120.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135, section 9.3. MR0106147 (21 #4881)

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 5), 34); A[2] + 16*A[3]; /* Michael Somos, May 03 2015 */
  • Mathematica
    edashed[r_,n_] := Plus@@(Select[Divisors[n], Mod[n/#,4] == 1 &]^r) - Plus@@(Select[Divisors[n], Mod[n/#,4] == 3 &]^r); edashed[4,#] &/@Range[33] (* Ant King, Nov 10 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] (EllipticTheta[ 2, 0, x]^8 + 4 EllipticTheta[ 2, 0, x^2]^8) / 256, {x, 0, 2 n}]; (* Michael Somos, Jan 11 2015 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(4*e+4) - s[p]^(e+1))/(p^4 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * (-1)^((n/d - 1)/2) * d^4))}; /* Michael Somos, Sep 12 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^4 * kronecker( -4, n\d)))}; /* Michael Somos, Jan 14 2012 */
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A)^4 * (eta(x + A)^4 + 20 * x * eta(x^4 + A)^8 / eta(x + A)^4), n))}; /* Michael Somos, Jan 14 2012 */
    

Formula

a(2*n + 1) = A204342(n). a(2*n) = 16 * a(n).
G.f.: Sum_{n>=1} n^4*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Michael Somos, Jan 14 2012: (Start)
Expansion of eta(q^2)^2 * eta(q^4)^4 * (eta(q)^4 + 20 * eta(q^4)^8 / eta(q)^4) in powers of q.
a(n) is multiplicative with a(2^e) = 16^e, a(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4), a(p^e) = ((p^4)^(e+1) - (-1)^(e+1)) / (p^4 + 1) if p == 3 (mod 4). (End)
From Michael Somos, Jan 15 2012: (Start)
Expansion of theta_3(q^2) * (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.
Expansion of x * phi(x)^2 * (psi(x)^8 + 4 * x * psi(x^2)^8) in powers of x where phi(), psi() are Ramanujan theta functions. (End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/2) (t/i)^5 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A204372. - Michael Somos, May 03 2015
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(4*e+4) - A101455(p)^(e+1))/(p^4 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 5*Pi^5/1536 (A175571). (End)
a(n) = Sum_{d|n} (n/d)^4*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A050471 a(n) = Sum_{d|n, n/d=1 mod 4} d^3 - Sum_{d|n, n/d=3 mod 4} d^3.

Original entry on oeis.org

1, 8, 26, 64, 126, 208, 342, 512, 703, 1008, 1330, 1664, 2198, 2736, 3276, 4096, 4914, 5624, 6858, 8064, 8892, 10640, 12166, 13312, 15751, 17584, 18980, 21888, 24390, 26208, 29790, 32768, 34580, 39312, 43092, 44992, 50654, 54864, 57148
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Dirichlet convolution of A000578 = n^3 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Crossrefs

Glaisher's E'_i (i=0..12): A002654, A050469, A050470, this sequence, A050468, A321829, A321830, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    max = 40; s = Sum[n^3*x^(n-1)/(1+x^(2*n)), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 02 2015, after Vladeta Jovovic *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(3*e+3) - s[p]^(e+1))/(p^3 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^3*(((n/d) % 4)==1)) - sumdiv(n, d, d^3*(((n/d) % 4)==3)); \\ Michel Marcus, Feb 16 2015

Formula

G.f.: Sum_{n>=1} n^3*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(3*e+3) - A101455(p)^(e+1))/(p^3 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = A175572. (End)
a(n) = Sum_{d|n} (n/d)^3*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

Extensions

Offset changed from 0 to 1 by R. J. Mathar, Jul 15 2010

A321829 a(n) = Sum_{d|n, n/d==1 mod 4} d^5 - Sum_{d|n, n/d==3 mod 4} d^5.

Original entry on oeis.org

1, 32, 242, 1024, 3126, 7744, 16806, 32768, 58807, 100032, 161050, 247808, 371294, 537792, 756492, 1048576, 1419858, 1881824, 2476098, 3201024, 4067052, 5153600, 6436342, 7929856, 9768751, 11881408, 14290100, 17209344, 20511150, 24207744, 28629150, 33554432, 38974100, 45435456, 52535556
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, this sequence, A321830, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, # ^5 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(5*e+5) - s[p]^(e+1))/(p^5 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321829(n)=factorback(apply(f->f[1]^(5*f[2]+5)\/(f[1]^5+f[1]%4-2),Col(factor(n)))), [1..40]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^5*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(5e+5)/(p^5 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = A175570. - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^5*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321830 a(n) = Sum_{d|n, n/d==1 mod 4} d^6 - Sum_{d|n, n/d==3 mod 4} d^6.

Original entry on oeis.org

1, 64, 728, 4096, 15626, 46592, 117648, 262144, 530713, 1000064, 1771560, 2981888, 4826810, 7529472, 11375728, 16777216, 24137570, 33965632, 47045880, 64004096, 85647744, 113379840, 148035888, 190840832, 244156251, 308915840, 386889776
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, this sequence, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^6 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(6*e+6) - s[p]^(e+1))/(p^6 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321830(n)=factorback(apply(f->f[1]^(6*f[2]+6)\/(f[1]^6+f[1]%4-2),Col(factor(n)))), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(6e+6)/(p^6 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = 61*Pi^7/184320 (A258814). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^6*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321831 a(n) = Sum_{d|n, n/d==1 mod 4} d^7 - Sum_{d|n, n/d==3 mod 4} d^7.

Original entry on oeis.org

1, 128, 2186, 16384, 78126, 279808, 823542, 2097152, 4780783, 10000128, 19487170, 35815424, 62748518, 105413376, 170783436, 268435456, 410338674, 611940224, 893871738, 1280016384, 1800262812, 2494357760, 3404825446, 4584374272, 6103593751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, this sequence, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^7 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(7*e+7) - s[p]^(e+1))/(p^7 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321831(n)=factorback(apply(f->f[1]^(7*f[2]+7)\/(f[1]^7+f[1]%4-2),Col(factor(n)))), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^7*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(7e+7)/(p^7 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^8 / 8, where c = A258815. - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^7*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321832 a(n) = Sum_{d|n, n/d==1 (mod 4)} d^8 - Sum_{d|n, n/d==3 (mod 4)} d^8.

Original entry on oeis.org

1, 256, 6560, 65536, 390626, 1679360, 5764800, 16777216, 43040161, 100000256, 214358880, 429916160, 815730722, 1475788800, 2562506560, 4294967296, 6975757442, 11018281216, 16983563040, 25600065536, 37817088000, 54875873280, 78310985280, 110058536960, 152588281251, 208827064832
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, this sequence, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^8 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(8*e+8) - s[p]^(e+1))/(p^8 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321832(n)=factorback(apply(f->f[1]^(8*f[2]+8)\/(f[1]^8+f[1]%4-2),Col(factor(n)))), [1..50]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^8*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(8e+8)/(p^8 + (p mod 4) - 2)). (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^9 / 9, where c = 277*Pi^9/8257536 (A258816). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^8*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321833 a(n) = Sum_{d|n, n/d==1 mod 4} d^9 - Sum_{d|n, n/d==3 mod 4} d^9.

Original entry on oeis.org

1, 512, 19682, 262144, 1953126, 10077184, 40353606, 134217728, 387400807, 1000000512, 2357947690, 5159518208, 10604499374, 20661046272, 38441425932, 68719476736, 118587876498, 198349213184, 322687697778, 512000262144, 794239673292
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, this sequence, A321834, A321835, A321836.

Programs

  • Maple
    f:= n ->
    mul(piecewise(t[1]=2,2^(9*t[2]), t[1] mod 4 = 1, (t[1]^(9*(t[2]+1))-1)/(t[1]^9-1), (t[1]^(9*(t[2]+1))+(-1)^t[2])/(t[1]^9+1)), t = ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Nov 26 2018
  • Mathematica
    s[n_,r_] := DivisorSum[n, #^9 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(9*e+9) - s[p]^(e+1))/(p^9 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n,d,if(bittest(n\d,0),(2-n\d%4)*d^9)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^9*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Robert Israel, Nov 26 2018: (Start) a(2^m) = 2^(9*m).
For prime p == 1 (mod 4), a(p^m) = (p^(9(m+1))-1)/(p^9-1).
For prime p == 3 (mod 4), a(p^m) = (p^(9(m+1))+(-1)^m)/(p^9+1). (End)
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(9*e+9) - A101455(p)^(e+1))/(p^9 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^10 / 10, where c = beta(10) = 0.99998316402... and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^9*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024
Showing 1-10 of 19 results. Next