cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A050526 Primes of form 5*2^n+1.

Original entry on oeis.org

11, 41, 641, 40961, 163841, 167772161, 2748779069441, 180143985094819841, 188894659314785808547841, 193428131138340667952988161, 850705917302346158658436518579420528641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 1999

Keywords

Comments

All terms are odd since if n is even, then 5*2^n+1 is divisible by 3. - Michele Fabbrini, Jun 06 2021

Crossrefs

For the corresponding exponents n see A002254.

Programs

  • GAP
    Filtered(List([1..270], n->5*2^n + 1), IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 5*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n, k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n, 5), n=1..127); # Martin Renner, Mar 05 2018
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=5*2^k+1), print1(p, ", "))); } \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A083575(A002254(n)). - Michel Marcus, Mar 29 2018

A032353 Numbers k such that 7*2^k+1 is prime.

Original entry on oeis.org

2, 4, 6, 14, 20, 26, 50, 52, 92, 120, 174, 180, 190, 290, 320, 390, 432, 616, 830, 1804, 2256, 6614, 13496, 15494, 16696, 22386, 54486, 88066, 95330, 207084, 283034, 561816, 804534, 811230, 1491852, 2139912, 2167800, 2915954, 3015762, 3511774, 5775996
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

Added more terms (from http://web.archive.org/web/20161028080239/http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013
a(41) from Jeppe Stig Nielsen, Jul 25 2019

A037178 Longest cycle when squaring modulo n-th prime.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 1, 6, 10, 3, 4, 6, 4, 6, 11, 12, 28, 4, 10, 12, 6, 12, 20, 10, 2, 20, 8, 52, 18, 3, 6, 12, 8, 22, 36, 20, 12, 54, 82, 14, 11, 12, 36, 2, 21, 30, 12, 36, 28, 18, 28, 24, 4, 100, 1, 130, 66, 36, 22, 12, 46, 9, 24, 20, 12, 39, 20, 6, 172, 28, 10, 178, 60, 10, 18
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 for Fermat primes, A019434. a(n)=2 for primes in A039687. a(n)=3 for primes in A050527. Sequence A141305 gives those primes p > 3 having the longest possible cycle, (p-3)/2. - T. D. Noe, Jun 24 2008

Crossrefs

a(n) = maximal entry in row p of A278185.

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n], k}, k = (p-1)/2^IntegerExponent[p-1, 2]; MultiplicativeOrder[2, k]]; Array[a, 100] (* Jean-François Alcover, Jan 28 2016, after T. D. Noe *)
  • PARI
    a(n) = {ppn = prime(n) - 1; k = ppn >> valuation(ppn, 2); znorder(Mod(2, k));} \\ Michel Marcus, Nov 11 2015
    
  • PARI
    rpsi(n) = lcm(znstar(n)[2]); \\ A002322
    pb(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ A007733
    a(n) = pb(rpsi(prime(n))); \\ Michel Marcus, Jan 28 2016

Formula

Let p=prime(n) and k=A000265(p-1), the odd part of p-1. Then a(n) = ord(2,k), that is, the smallest positive integer x such that 2^x = 1 (mod k). - T. D. Noe, Jun 24 2008
a(n) = A007733(A002322(prime(n))). - Michel Marcus, Jan 28 2016
a(n) = A256608(prime(n)).

A300407 Primes of the form 17*2^n + 1.

Original entry on oeis.org

137, 557057, 2281701377, 38280596832649217, 3032901347000164747248857685080177164813336577, 240291200809860268823328460101036918152537809975084178304538443375796289537, 4031417378886400659867047414062478199819447786118941877597755244819503521544011777
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A002259.

Examples

			From _Muniru A Asiru_, Mar 29 2018: (Start)
137 is a member because 17 * 2^3 + 1 = 137 which is a prime.
557057 is a member because 17 * 2^15 + 1 = 557057 which is a prime.
2281701377 is a member because 17 * 2^27 + 1 = 2281701377 which is a prime.
... (End)
		

Crossrefs

Programs

  • GAP
    Filtered(List([1..270],n->17*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 17*2^n + 1]; // Vincenzo Librandi, Mar 07 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,17), n=1..267);
  • Mathematica
    Select[Table[17 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 07 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=17*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 28 2018

A280003 Numbers k such that 7*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

14, 120, 290, 320, 95330, 2167800
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 21 2017

Keywords

Comments

18233956 belongs to this sequence, but its position is currently unknown. - Jeppe Stig Nielsen, Oct 05 2020

Crossrefs

Programs

  • Magma
    IsInteger := func; [n: n in [1..320] | IsPrime(k) and IsInteger(Log(2, Modorder(2, k))) where k is 7*2^n+1];

A300406 Primes of the form 13*2^n + 1.

Original entry on oeis.org

53, 3329, 13313, 13631489, 3489660929, 62864142619960717084721153, 5100145160001678120616578906356228963083163798627028041729, 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329, 1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A032356.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->13*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,13), n=1..316);
  • Mathematica
    Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 06 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A168596(A032356(n)). - Michel Marcus, Mar 29 2018

A300408 Primes of the form 19*2^n + 1.

Original entry on oeis.org

1217, 19457, 1337006139375617
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

Next term a(4) = 19*2^366 + 1 > 10^111.
For the corresponding exponents n see A032359.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->19*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,19), n=1..366);
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=19*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

A322916 Numbers k such that 303*2^k+1 is prime.

Original entry on oeis.org

1, 2, 5, 8, 9, 10, 13, 17, 21, 30, 38, 93, 125, 140, 170, 178, 181, 394, 453, 588, 1161, 1221, 1573, 1665, 1745, 3613, 3661, 5750, 6002, 6198, 6393, 6764, 7209, 7514, 9444, 13034, 15277, 16070, 20042, 22970, 22977, 25674, 28438, 31040, 35137, 42410, 60285
Offset: 1

Views

Author

Robert Price, Dec 30 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(303*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[303*2^# + 1] &] (* Robert Price, Dec 30 2018 *)

A322949 Numbers k such that 315*2^k+1 is prime.

Original entry on oeis.org

1, 3, 6, 9, 20, 22, 27, 32, 72, 97, 99, 104, 107, 120, 140, 142, 151, 180, 304, 305, 342, 440, 489, 521, 635, 665, 673, 767, 876, 1040, 1313, 1359, 1764, 2032, 2224, 2280, 2783, 2832, 2875, 5256, 8225, 10297, 11124, 12124, 17552, 18592, 24435, 30704, 37467
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[315*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

A322957 Numbers k such that 329*2^k+1 is prime.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 27, 55, 87, 105, 111, 163, 225, 311, 487, 537, 723, 735, 771, 1515, 1599, 4685, 5523, 5895, 9723, 20107, 55035, 66355, 108393, 181189, 455645, 604999, 623005, 829207, 1019093, 1246017, 2099771, 2163717, 2266631, 2348105, 2688221, 3002295
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(329*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[329*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(37)-a(41) from Jeppe Stig Nielsen, Jan 04 2020
a(42) from Jeppe Stig Nielsen, Dec 20 2024
Showing 1-10 of 28 results. Next