cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A078749 Duplicate of A051130.

Original entry on oeis.org

2, 3, 7, 13, 42, 55, 2841
Offset: 1

Views

Author

Keywords

A330991 Positive integers whose number of factorizations into factors > 1 (A001055) is a prime number (A000040).

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 40, 42, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 69, 70, 74, 77, 78, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

In short, A001055(a(n)) belongs to A000040.

Examples

			Factorizations of selected terms:
  (4)    (8)      (16)       (24)       (60)       (96)
  (2*2)  (2*4)    (2*8)      (3*8)      (2*30)     (2*48)
         (2*2*2)  (4*4)      (4*6)      (3*20)     (3*32)
                  (2*2*4)    (2*12)     (4*15)     (4*24)
                  (2*2*2*2)  (2*2*6)    (5*12)     (6*16)
                             (2*3*4)    (6*10)     (8*12)
                             (2*2*2*3)  (2*5*6)    (2*6*8)
                                        (3*4*5)    (3*4*8)
                                        (2*2*15)   (4*4*6)
                                        (2*3*10)   (2*2*24)
                                        (2*2*3*5)  (2*3*16)
                                                   (2*4*12)
                                                   (2*2*3*8)
                                                   (2*2*4*6)
                                                   (2*3*4*4)
                                                   (2*2*2*12)
                                                   (2*2*2*2*6)
                                                   (2*2*2*3*4)
                                                   (2*2*2*2*2*3)
		

Crossrefs

Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[facs[#]]]&]

A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists.

Original entry on oeis.org

4, 8, 16, 24, 60, 0, 0, 96, 0, 144, 216, 0, 0, 0, 288, 0, 0, 0, 768, 0, 0, 0, 0, 0, 864, 8192, 0, 0, 1080, 0, 0, 0, 1800, 3072, 0, 0, 0, 0, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3456, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24576
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Examples

			Factorizations of the initial positive terms are:
  4    8      16       24       60       96
  2*2  2*4    2*8      3*8      2*30     2*48
       2*2*2  4*4      4*6      3*20     3*32
              2*2*4    2*12     4*15     4*24
              2*2*2*2  2*2*6    5*12     6*16
                       2*3*4    6*10     8*12
                       2*2*2*3  2*5*6    2*6*8
                                3*4*5    3*4*8
                                2*2*15   4*4*6
                                2*3*10   2*2*24
                                2*2*3*5  2*3*16
                                         2*4*12
                                         2*2*3*8
                                         2*2*4*6
                                         2*3*4*4
                                         2*2*2*12
                                         2*2*2*2*6
                                         2*2*2*3*4
                                         2*2*2*2*2*3
		

Crossrefs

All positive terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330993 Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 21, 22, 25, 33, 38, 41, 45, 46, 49, 50, 55, 57, 58, 63
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This multiset (row k of A305936) is generally not the same as the multiset of prime indices of k. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
Also numbers whose inverse prime shadow has a prime number of factorizations. A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798. The inverse prime shadow of k is the least number whose prime exponents are the prime indices of k.

Examples

			The multiset partitions for n = 1..6:
  {11}    {12}    {111}      {1111}        {123}      {1112}
  {1}{1}  {1}{2}  {1}{11}    {1}{111}      {1}{23}    {1}{112}
                  {1}{1}{1}  {11}{11}      {2}{13}    {11}{12}
                             {1}{1}{11}    {3}{12}    {2}{111}
                             {1}{1}{1}{1}  {1}{2}{3}  {1}{1}{12}
                                                      {1}{2}{11}
                                                      {1}{1}{1}{2}
The factorizations for n = 1..8:
  4    6    8      16       30     24       32         60
  2*2  2*3  2*4    2*8      5*6    3*8      4*8        2*30
            2*2*2  4*4      2*15   4*6      2*16       3*20
                   2*2*4    3*10   2*12     2*2*8      4*15
                   2*2*2*2  2*3*5  2*2*6    2*4*4      5*12
                                   2*3*4    2*2*2*4    6*10
                                   2*2*2*3  2*2*2*2*2  2*5*6
                                                       3*4*5
                                                       2*2*15
                                                       2*3*10
                                                       2*2*3*5
		

Crossrefs

The same for powers of 2 (instead of primes) is A330990.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).
Factorizations of a number's inverse prime shadow are A318284.
Numbers with a prime number of factorizations are A330991.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]

Formula

A001055(A181821(a(n))) belongs to A000040.

A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A080257 in lacking 60.

Examples

			Strict factorizations of selected terms:
  (6)    (12)   (24)     (48)     (216)
  (2*3)  (2*6)  (3*8)    (6*8)    (3*72)
         (3*4)  (4*6)    (2*24)   (4*54)
                (2*12)   (3*16)   (6*36)
                (2*3*4)  (4*12)   (8*27)
                         (2*3*8)  (9*24)
                         (2*4*6)  (12*18)
                                  (2*108)
                                  (3*8*9)
                                  (4*6*9)
                                  (2*3*36)
                                  (2*4*27)
                                  (2*6*18)
                                  (2*9*12)
                                  (3*4*18)
                                  (3*6*12)
                                  (2*3*4*9)
		

Crossrefs

The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
The non-strict version is A330991.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[strfacs[#]]]&]

A051131 Prime Bell numbers (A000110).

Original entry on oeis.org

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837
Offset: 1

Views

Author

Keywords

Examples

			Bell(2)=2 and Bell(3)=5 are primes, Bell(4)..Bell(6) are composite, Bell(7)=877 is prime.
		

Crossrefs

A113883 Indices of semiprime Bell numbers A000110.

Original entry on oeis.org

4, 6, 16, 31, 33, 49, 84
Offset: 1

Views

Author

Jonathan Vos Post, Jan 27 2006

Keywords

Comments

Semiprime analog of A051130 (indices of prime Bell numbers). These indices of semiprime Bell numbers include all values through B(120), which has 146 digits and at least 5 prime factors, the smallest being 71.

Examples

			a(1) = 4 because B(4) = 15 = 3 * 5.
a(2) = 6 because B(6) = 203 = 7 * 29.
a(3) = 16 because B(16) = 10480142147 = 241 * 43486067.
a(4) = 31 because B(31) = 10293358946226376485095653
= 11 * 935759904202397862281423.
a(5) = 33 because B(33) = 1629595892846007606764728147
= 5694673 * 286161451736738458339.
a(6) = 49 because B(49) =
10726137154573358400342215518590002633917247281
= 7615441337805454611187 *
1408472165798904899327563.
a(7) = 84 because B(84) is a 93-digit semiprime, whose smaller prime factor is 8429925224798761223.
		

Crossrefs

Formula

n such that A000110(n) is semiprime. n such that A000110(n) is in A001358.

A268286 a(n) = Bell(prime(n)).

Original entry on oeis.org

2, 5, 52, 877, 678570, 27644437, 82864869804, 5832742205057, 44152005855084346, 71339801938860275191172, 10293358946226376485095653, 52868366208550447901945575624941, 2351152507740617628200694077243788988, 552950118797165484321714693280737767385
Offset: 1

Views

Author

Vincenzo Librandi, Jan 30 2016

Keywords

Crossrefs

Programs

  • Magma
    [Bell(NthPrime(n)): n in [1..14]];
  • Mathematica
    BellB[Prime[Range[30]]]

A325630 Numbers k such that A000110(k) is divisible by k.

Original entry on oeis.org

1, 2, 35, 16833, 16989, 23684
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 07 2019

Keywords

Comments

No other terms below 50000.
From Amiram Eldar, Jun 20 2024: (Start)
Numbers k such that A166226(k) = 0.
All the terms above 2 are composites since A166226(p) == 2 (mod p) for prime p. (End)
No other terms below 90000. - Michael S. Branicky, Jan 09 2025

Examples

			35 is in the sequence because A000110(35) = 35 * 8045720086273150473238297902.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Divisible[BellB[#], #] &]

A355137 Indices of primes in the sequence A000296.

Original entry on oeis.org

5, 6, 41, 119, 5118
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 20 2022

Keywords

Comments

The next term, if it exists, is > 20000.

Examples

			5 is in the sequence because A000296(5) = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    s = 1; A000296 = Table[s = BellB[n] - s, {n, 0, 1000}]; Select[Range[1000], PrimeQ[A000296[[#]]]&]
Showing 1-10 of 10 results.