A078749 Duplicate of A051130.
2, 3, 7, 13, 42, 55, 2841
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Factorizations of selected terms: (4) (8) (16) (24) (60) (96) (2*2) (2*4) (2*8) (3*8) (2*30) (2*48) (2*2*2) (4*4) (4*6) (3*20) (3*32) (2*2*4) (2*12) (4*15) (4*24) (2*2*2*2) (2*2*6) (5*12) (6*16) (2*3*4) (6*10) (8*12) (2*2*2*3) (2*5*6) (2*6*8) (3*4*5) (3*4*8) (2*2*15) (4*4*6) (2*3*10) (2*2*24) (2*2*3*5) (2*3*16) (2*4*12) (2*2*3*8) (2*2*4*6) (2*3*4*4) (2*2*2*12) (2*2*2*2*6) (2*2*2*3*4) (2*2*2*2*2*3)
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],PrimeQ[Length[facs[#]]]&]
Factorizations of the initial positive terms are: 4 8 16 24 60 96 2*2 2*4 2*8 3*8 2*30 2*48 2*2*2 4*4 4*6 3*20 3*32 2*2*4 2*12 4*15 4*24 2*2*2*2 2*2*6 5*12 6*16 2*3*4 6*10 8*12 2*2*2*3 2*5*6 2*6*8 3*4*5 3*4*8 2*2*15 4*4*6 2*3*10 2*2*24 2*2*3*5 2*3*16 2*4*12 2*2*3*8 2*2*4*6 2*3*4*4 2*2*2*12 2*2*2*2*6 2*2*2*3*4 2*2*2*2*2*3
The multiset partitions for n = 1..6: {11} {12} {111} {1111} {123} {1112} {1}{1} {1}{2} {1}{11} {1}{111} {1}{23} {1}{112} {1}{1}{1} {11}{11} {2}{13} {11}{12} {1}{1}{11} {3}{12} {2}{111} {1}{1}{1}{1} {1}{2}{3} {1}{1}{12} {1}{2}{11} {1}{1}{1}{2} The factorizations for n = 1..8: 4 6 8 16 30 24 32 60 2*2 2*3 2*4 2*8 5*6 3*8 4*8 2*30 2*2*2 4*4 2*15 4*6 2*16 3*20 2*2*4 3*10 2*12 2*2*8 4*15 2*2*2*2 2*3*5 2*2*6 2*4*4 5*12 2*3*4 2*2*2*4 6*10 2*2*2*3 2*2*2*2*2 2*5*6 3*4*5 2*2*15 2*3*10 2*2*3*5
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]
Strict factorizations of selected terms: (6) (12) (24) (48) (216) (2*3) (2*6) (3*8) (6*8) (3*72) (3*4) (4*6) (2*24) (4*54) (2*12) (3*16) (6*36) (2*3*4) (4*12) (8*27) (2*3*8) (9*24) (2*4*6) (12*18) (2*108) (3*8*9) (4*6*9) (2*3*36) (2*4*27) (2*6*18) (2*9*12) (3*4*18) (3*6*12) (2*3*4*9)
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],PrimeQ[Length[strfacs[#]]]&]
Bell(2)=2 and Bell(3)=5 are primes, Bell(4)..Bell(6) are composite, Bell(7)=877 is prime.
a(1) = 4 because B(4) = 15 = 3 * 5. a(2) = 6 because B(6) = 203 = 7 * 29. a(3) = 16 because B(16) = 10480142147 = 241 * 43486067. a(4) = 31 because B(31) = 10293358946226376485095653 = 11 * 935759904202397862281423. a(5) = 33 because B(33) = 1629595892846007606764728147 = 5694673 * 286161451736738458339. a(6) = 49 because B(49) = 10726137154573358400342215518590002633917247281 = 7615441337805454611187 * 1408472165798904899327563. a(7) = 84 because B(84) is a 93-digit semiprime, whose smaller prime factor is 8429925224798761223.
[Bell(NthPrime(n)): n in [1..14]];
BellB[Prime[Range[30]]]
35 is in the sequence because A000110(35) = 35 * 8045720086273150473238297902.
Select[Range[1000], Divisible[BellB[#], #] &]
Comments