cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090314 a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.

Original entry on oeis.org

2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n+1) = 0.04339638... = 2/(23+sqrt(533)) = (sqrt(533)-23)/2.
Lim_{n -> infinity} a(n+1)/a(n) = 23.04339638... = (23+sqrt(533))/2 = 2/(sqrt(533) - 23).

Examples

			a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), this sequence (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
    LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
a(n) = ((23 + sqrt(533))/2)^n + ((23 - sqrt(533))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5....
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-23*x)/(1-23*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 23) = 2*(-i)^n * ChebyshevT(n, 23*i/2). - G. C. Greubel, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Terms a(16) onward added by G. C. Greubel, Dec 29 2019

A000231 Number of inequivalent Boolean functions of n variables under action of complementing group.

Original entry on oeis.org

2, 3, 7, 46, 4336, 134281216, 288230380379570176, 2658455991569831764110243006194384896, 452312848583266388373324160190187140390789016525312000869601987902398529536
Offset: 0

Views

Author

Keywords

Comments

The next term has 152 digits. - Harvey P. Dale, Jun 21 2011

References

  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (Includes this sequence, correctly, although in the Preface on page viii 4336 is mis-typed as 4436).

Crossrefs

Cf. A051502.
Row sums of A054724.

Programs

  • Maple
    a:= n-> (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n:
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 27 2023
  • Mathematica
    Table[(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n,{n,10}] (* Harvey P. Dale, Jun 21 2011 *)
  • PARI
    a(n)=(2^(2^n-n)+(2^n-1)*2^(2^(n-1)-n)) \\ Charles R Greathouse IV, Jul 29 2016

Formula

a(n) = (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n.

Extensions

More terms from Vladeta Jovovic, Apr 20 2000
a(0)=2 prepended by Alois P. Heinz, Jan 27 2023

A090731 a(n) = 23a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 23.

Original entry on oeis.org

2, 23, 527, 12098, 277727, 6375623, 146361602, 3359941223, 77132286527, 1770682648898, 40648568638127, 933146396028023, 21421718540006402, 491766380024119223, 11289205022014735727, 259159949126314802498
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

Keywords

Comments

A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 21*(5*b)^2 =+4 with companion sequence b(n)=A097778(n-1), n>=1; b(0):=0.

Examples

			(x;y) = (0;2), (23;1), (527;23), (12098;528), ... give the
nonnegative integer solutions to x^2 - 21*(5*y)^2 = 4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 21*(5*A097778(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 23; a[n_] := 23a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{23,-1},{2,23},30] (* Harvey P. Dale, Feb 20 2012 *)
  • Sage
    [lucas_number2(n,23,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008

Formula

a(n) = S(n, 23) - S(n-2, 23) = 2*T(n, 23/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 23)=A097778(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (23+5*sqrt(21))/2 and am := (23-5*sqrt(21))/2.
G.f.: (2-23*x)/(1-23*x+x^2).

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

A022619 Triangle T(n,k)of numbers of asymmetric Boolean functions of n variables with exactly k = 0..2^n nonzero values (atoms) under action of complementing group C(n,2).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 7, 7, 7, 0, 1, 0, 0, 1, 0, 35, 105, 273, 448, 715, 750, 715, 448, 273, 105, 35, 0, 1, 0, 0, 1, 0, 155, 1085, 6293, 27776, 105183, 327050, 876525, 2011776, 4032015, 7048811, 10855425, 14721280, 17678835, 18771864
Offset: 1

Views

Author

Vladeta Jovovic, Jul 13 2000

Keywords

Examples

			Triangle begins:
  [0,1,0],
  [0,1,0,1,0],
  [0,1,0,7,7,7,0,1,0],
  ...;
T(5,k) = coefficient of x^k in (1/32)*((1+x)^32-31*(1+x^2)^16+310*(1+x^4)^8-1240*(1+x^8)^4+1984*(1+x^16)^2-1024*(1+x^32)),k = 0..32.
		

Crossrefs

Row sums give A051502.
Cf. A054724.

Programs

  • Mathematica
    T[n_,0]:=0; T[n_, k_] := (1/2^n)*Coefficient[Sum[(-1)^j*2^(Binomial[j, 2])* QBinomial[n, j, 2]*(1 + x^(2^j))^(2^(n - j)), {j, 0, n}], x^k];
    Table[T[n, k], {n, 1, 5}, {k, 0, 2^n}] // Flatten (* G. C. Greubel, Feb 15 2018 *)

Formula

T(n, k) = coefficient of x^k in (1/2^n)*Sum_{j = 0..n} (-1)^j*2^C(j, 2)*[n, j]*(1+x^(2^j))^(2^(n-j)), where [n, j] is Gaussian 2-binomial coefficient; k = 0..2^n.

A029941 Number of symmetric types of (4,2n)-hypergraphs under action of complementing group C(4,2).

Original entry on oeis.org

1, 15, 50, 225, 590, 1485, 3130, 6435, 11931, 21450, 36220, 59670, 94140, 145350, 217500, 319770, 458981, 648945, 900350, 1233375, 1663850, 2220075, 2924870, 3817125, 4928511, 6310980, 8007640, 10086780, 12605560, 15651900, 19300440, 23662980, 28835081
Offset: 0

Views

Author

Vladeta Jovovic, Jul 13 2000

Keywords

Comments

The first g.f. gives a 0 between each two terms of the sequence - Colin Barker, Jul 12 2013

Crossrefs

Cf. A051502.

Programs

  • Mathematica
    CoefficientList[Series[(9 x^12 - 21 x^11 + 26 x^10 + 121 x^9 - 149 x^8 + 132 x^7 + 20 x^6 + 68 x^5 - 61 x^4 + 89 x^3 - 6 x^2 + 11 x + 1)/((x - 1)^8 (x + 1)^4 (x^2 + 1)^2 (x^4 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{4,-4,-4,11,-8,0,8,-10,0,8,0,-10,8,0,-8,11,-4,-4,4,-1},{1,15,50,225,590,1485,3130,6435,11931,21450,36220,59670,94140,145350,217500,319770,458981,648945,900350,1233375},40] (* Harvey P. Dale, Aug 14 2021 *)

Formula

G.f.: (30/(1-x^2)^8-70/(1-x^4)^4+120/(1-x^8)^2-64/(1-x^16))/16.
G.f.: (9*x^12 -21*x^11 +26*x^10 +121*x^9 -149*x^8 +132*x^7 +20*x^6 +68*x^5 -61*x^4 +89*x^3 -6*x^2 +11*x +1) / ((x-1)^8 *(x+1)^4 *(x^2+1)^2 *(x^4+1)). - Colin Barker, Jul 12 2013
a(n) = 4*a(n-1)-4*a(n-2)-4*a(n-3)+11*a(n-4)-8*a(n-5)+8*a(n-7)-10*a(n-8)+8*a(n-10)-10*a(n-12)+8*a(n-13)-8*a(n-15)+11*a(n-16)-4*a(n-17)-4*a(n-18)+4*a(n-19)-a(n-20). - Wesley Ivan Hurt, May 24 2021

Extensions

More terms from James Sellers, Aug 08 2000
More terms from Colin Barker, Jul 12 2013

A227725 T(n,k) = number of small equivalence classes of n-ary Boolean functions that contain 2^k functions.

Original entry on oeis.org

2, 2, 1, 2, 3, 2, 2, 7, 14, 23, 2, 15, 70, 345, 3904
Offset: 0

Views

Author

Tilman Piesk, Jul 22 2013

Keywords

Comments

Left diagonal (k=0) has only 2s. Two functions (contradiction and tautology) are always alone in their respective sec, regardless of arity.
Second diagonal (k=1) is 2^n-1 (A000225). These are the n-ary linear Boolean functions. Each sec contains a row of a binary Walsh matrix and its complement.
Right diagonal (k=n) is A051502, the numbers of small equivalence classes of n-ary functions, that contain the highest possible number of 2^n functions.

Examples

			Triangle begins:              Row sums (A000231)
            2                         2
         2     1                      3
      2     3     2                   7
   2     7    14    23               46
2    15    70    345   3904        4336
		

Crossrefs

A055788 Number of symmetric types of (5,2n)-hypergraphs under action of complementing group C(5,2).

Original entry on oeis.org

1, 31, 186, 1581, 7316, 30039, 103974, 330429, 947050, 2533289, 6325550, 14969435, 33665380, 72544185, 150236850, 300540195, 582235491, 1096087770, 2009383420, 3595937070, 6292703640, 10787811210, 18142828740, 29975617710
Offset: 0

Views

Author

Vladeta Jovovic, Jul 13 2000

Keywords

Crossrefs

Cf. A051502.

Formula

G.f.: (62/(1-x^2)^16-310/(1-x^4)^8+1240/(1-x^8)^4-1984/(1-x^16)^2+1024/(1-x^32))/32.

Extensions

More terms from James Sellers, Aug 22 2000
Showing 1-7 of 7 results.