cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A008475 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003

Examples

			a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
		

References

  • F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
  • T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.

Crossrefs

Programs

  • Haskell
    a008475 1 = 0
    a008475 n = sum $ a141809_row n
    -- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
    
  • Maple
    A008475 := proc(n) local e,j; e := ifactors(n)[2]:
    add(e[j][1]^e[j][2], j=1..nops(e)) end:
    seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
  • Mathematica
    f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
  • PARI
    for(n=1,100,print1(sum(i=1,omega(n), component(component(factor(n),1),i)^component(component(factor(n),2),i)),","))
    
  • PARI
    a(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])) /* Michael Somos, Oct 20 2004 */
    
  • PARI
    A008475(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Nov 17 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017

Formula

Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021

A106244 Number of partitions into distinct prime powers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 17, 19, 21, 24, 27, 30, 33, 37, 41, 46, 50, 56, 62, 68, 75, 82, 91, 99, 108, 118, 129, 141, 152, 166, 180, 196, 211, 229, 248, 267, 288, 310, 335, 360, 387, 415, 447, 479, 513, 549, 589, 630, 672, 719, 768, 820, 873, 930
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 26 2005

Keywords

Comments

A054685(n) < a(n) < A023893(n) for n>2.

Examples

			a(10) = #{3^2+1,2^3+2,7+3,7+2+1,5+2^2+1,5+3+2,2^2+3+2+1} = 7.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a106244 n = a106244_list !! n
    a106244_list = map (p' 1) [0..] where
       p' = memo2 integral integral p
       p _ 0 = 1
       p k m = if m < pp then 0 else p' (k + 1) (m - pp) + p' (k + 1) m
               where pp = a000961 k
    -- Reinhard Zumkeller, Nov 24 2015
  • Maple
    g:=(1+x)*(product(product(1+x^(ithprime(k)^j),j=1..5),k=1..20)): gser:=series(g,x=0,68): seq(coeff(gser,x,n),n=1..63); # Emeric Deutsch, Aug 27 2007
  • Mathematica
    m = 64; gf = (1+x)*Product[1+x^(Prime[k]^j), {j, 1, 5}, {k, 1, 18}] + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Mar 02 2019, from Maple *)
  • PARI
    lista(m) = {x = t + t*O(t^m); gf = (1+x)*prod(k=1, m, if (isprimepower(k),(1+x^k), 1)); for (n=0, m, print1(polcoeff(gf, n, t), ", "));} \\ Michel Marcus, Mar 02 2019
    

Formula

a(n) = A054685(n-1)+A054685(n). - Vladeta Jovovic, Apr 28 2005
G.f.: (1+x)*Product(Product(1+x^(p(k)^j), j=1..infinity),k=1..infinity), where p(k) is the k-th prime (offset 0). - Emeric Deutsch, Aug 27 2007

Extensions

Offset corrected and a(0)=1 added by Reinhard Zumkeller, Nov 24 2015

A054685 Number of partitions of n into distinct prime powers (1 not considered a power).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 7, 7, 10, 9, 12, 12, 15, 15, 18, 19, 22, 24, 26, 30, 32, 36, 39, 43, 48, 51, 57, 61, 68, 73, 79, 87, 93, 103, 108, 121, 127, 140, 148, 162, 173, 187, 200, 215, 232, 247, 266, 283, 306, 324, 348, 371, 397, 423, 450, 480, 512, 543, 579, 614
Offset: 0

Views

Author

David W. Wilson, Apr 19 2000

Keywords

Crossrefs

Cf. A051613.
Cf. A106244.
Cf. A000961.

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a054685 n = a054685_list !! n
    a054685_list = map (p' 2) [0..] where
       p' = memo2 integral integral p
       p _ 0 = 1
       p k m = if m < pp then 0 else p' (k + 1) (m - pp) + p' (k + 1) m
               where pp = a000961 k
    -- Reinhard Zumkeller, Nov 23 2015
  • Mathematica
    CoefficientList[Series[Product[Product[1 +x^(Prime[n]^k), {k, 1, 9}], {n, 1, 25}], {x, 0, 100}], x] (* G. C. Greubel, May 09 2019 *)

Formula

G.f.: Product_{p prime} Product_{k >= 1} (1 + x^(p^k)).

A009490 Number of distinct orders of permutations of n objects; number of nonisomorphic cyclic subgroups of symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 9, 11, 14, 16, 20, 23, 27, 31, 35, 43, 47, 55, 61, 70, 78, 88, 98, 111, 123, 136, 152, 168, 187, 204, 225, 248, 271, 296, 325, 356, 387, 418, 455, 495, 537, 581, 629, 678, 732, 787, 851, 918, 986, 1056, 1133, 1217, 1307, 1399, 1498, 1600, 1708, 1823
Offset: 0

Views

Author

Keywords

Comments

Also number of different LCM's of partitions of n.
a(n) <= A023893(n), which counts the nonisomorphic Abelian subgroups of S_n. - M. F. Hasler, May 24 2013

Crossrefs

Cf. A051613 (first differences), A000792, A000793, A034891, A051625 (all cyclic subgroups), A256067.

Programs

  • Maple
    b:= proc(n,i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, b(n, i-1)+
          add(b(n-p^j, i-1), j=1..ilog[p](n)))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    Table[ Length[ Union[ Apply[ LCM, Partitions[ n ], 1 ] ] ], {n, 30} ]
    f[n_] := Length@ Union[LCM @@@ IntegerPartitions@ n]; Array[f, 60, 0]
    (* Caution, the following is Extremely Slow and Resource Intensive *) CoefficientList[ Series[ Expand[ Product[1 + Sum[x^(Prime@ i^k), {k, 4}], {i, 10}]/(1 - x)], {x, 0, 30}], x]
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, b[n, i-1]+Sum[b[n-p^j, i-1], {j, 1, Log[p, n]}]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
  • PARI
    /* compute David W. Wilson's g.f., needs <1 sec for 1000 terms */
    N=1000;  x='x+O('x^N); /* N terms */
    gf=1; /* generating function */
    { forprime(p=2,N,
        sm = 1;  pp=p;  /* sum;  prime power */
        while ( ppJoerg Arndt, Jan 19 2011 */

Formula

a(n) = Sum_{k=0..n} b(k), where b(k) is the number of partitions of k into distinct prime power parts (1 excluded) (A051613). - Vladeta Jovovic
G.f.: (Product_{p prime} (1 + Sum_{k >= 1} x^(p^k))) / (1-x). - David W. Wilson, Apr 19 2000

A051703 Maximal value of products of partitions of n into powers of distinct primes (1 not considered a power).

Original entry on oeis.org

1, 0, 2, 3, 4, 6, 0, 12, 15, 20, 30, 28, 60, 40, 84, 105, 140, 210, 180, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6552, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120
Offset: 0

Views

Author

Keywords

Examples

			a(11) = 28 because max{11, 2*3^2, 2^3*3, 2^2*7} = 28.
		

Crossrefs

Largest element of n-th row of A080743.
A000793(n)=max{A000793(n-1), a(n)}, A000793(0)=1.

Programs

  • Maple
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0, 1, `if`(i<1 or n<0, 0, max(b(n, i-1),
          seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))) ))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    nmax = 48; Do[a[n]=0, {n, 1, nmax}]; km = PrimePi[nmax]; For[k=1, k <= km, k++, q = 1; p = Prime[k]; For[i=nmax, i >= 1, i--, q=1; While[q*p <= i, q *= p; If[i == q, m = q, If[a[i - q] != 0, m = q*a[i - q], m = 0]]; a[i] = Max[a[i], m]]]]; a[0] = 1; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 02 2012, translated from Robert Gerbicz's Pari program *)
  • PARI
    {N=1000;v=vector(N,i,0);forprime(p=2,N,q=1;forstep(i=N,1,-1,
    q=1;while(q*p<=i,q*=p;if(i==q,M=q,if(v[i-q],M=q*v[i-q],M=0));
    v[i]=max(v[i],M))));print(0" "1);for(i=1,N,print(i" "v[i]))} \\ Robert Gerbicz, Jul 31 2012

Extensions

Corrected and extended by Robert Gerbicz, Jul 31 2012

A080743 Array read by rows in which n-th row lists orders of elements of Symm(n) that are not orders of elements of Symm(n-1) (6th row is empty, written as 0 by convention).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 0, 7, 10, 12, 8, 15, 9, 14, 20, 21, 30, 11, 18, 24, 28, 35, 42, 60, 13, 22, 36, 40, 33, 45, 70, 84, 26, 44, 56, 105, 16, 39, 55, 63, 66, 90, 120, 140, 17, 52, 72, 210, 65, 77, 78, 110, 126, 132, 168, 180, 19, 34, 48, 88, 165, 420, 51, 91, 99, 130, 154, 156, 220
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Comments

A051613 gives number of elements in n-th row.

Examples

			1;
2;
3;
4;
5, 6;
0;
7, 10, 12;
8, 15;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, {n},
          {n, seq(map(x-> ilcm(x, i), b(n-i))[], i=2..n-1)}
           minus {seq(b(i)[], i=1..n-1)})
        end:
    T:= proc(n) local l; l:= [b(n, n)[]];
          `if`(nops(l)=0, 0, sort(l)[])
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<1 || n<0, 0, Max[Join[{b[n, i-1]}, Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n]}]]]]] ]; T[1] = {1}; T[6] = {0}; T[n_] := Reap[For[m = n, m <= b[n, PrimePi[n]], m++,  If[n == Total[Power @@@ FactorInteger[m]], Sow[m]]]][[2, 1]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

n-th row = set of m such that A008475(m) = n, or 0 if no such m exists.

Extensions

More terms from Vladeta Jovovic, Mar 12 2003

A035942 Number of partitions of n into distinct prime power parts (1 and 2 excluded).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 6, 5, 5, 3, 6, 8, 7, 8, 7, 7, 8, 10, 12, 11, 10, 10, 12, 15, 18, 15, 15, 15, 17, 20, 24, 24, 20, 20, 25, 29, 32, 32, 28, 28, 32, 40, 44, 44, 39, 39, 43, 56, 58, 55, 54, 53, 58, 71, 80, 77, 69, 69, 79, 92
Offset: 0

Views

Author

Keywords

Examples

			a(16) = 3 because we can write 16=3+13=5+11=3^2+7
		

Crossrefs

Cf. A051613.

A080744 Smallest element of n-th row of A080743.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 7, 8, 9, 21, 11, 35, 13, 33, 26, 16, 17, 65, 19, 51, 38, 57, 23, 95, 25, 69, 27, 75, 29, 150, 31, 32, 62, 93, 96, 155, 37, 217, 74, 111, 41, 185, 43, 123, 86, 129, 47, 215, 49, 141, 98, 147, 53, 245, 106, 159, 212, 265, 59, 371, 61, 177, 122, 64, 244, 305
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

Extensions

More terms from Vladeta Jovovic, Mar 09 2003

A079412 Number of ways to write n as sum of prime powers p^e such that e>0 and p does not divide n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 1, 3, 1, 11, 1, 18, 3, 7, 5, 43, 2, 65, 5, 24, 10, 137, 4, 115, 17, 84, 16, 379, 3, 519, 42, 152, 47, 317, 12, 1267, 73, 334, 41, 2213, 9, 2897, 107, 344, 174, 4871, 32, 3733, 100, 1369, 245, 10218, 51, 4037, 235, 2607, 554, 20586, 23, 25792, 795
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Comments

a(p) = A023894(p) - 1 for p prime.

Examples

			13 = 11+2 = 3^2+2^2 = 3^2+2+2 = 2^3+5 = 2^3+3+2 = 7+2^2+2 = 7+3+3 = 7+2+2+2 = 5+5+3 = 5+2^2+2^2 = 5+2^2+2+2 = 5+3+3+2 = 5+2+2+2+2 = 2^2+2^2+3+2 = 2^2+3+3+3 = 2^2+3+2+2+2 = 3+3+3+2+2 = 3+2+2+2+2+2, therefore a(13)=18, (A023894(13)=19, A079413(13)=3);
14 = 11+3 = 3^2+5 = 5+3+3+3, therefore a(14)=3, (A023894(14)=23, A079413(14)=2).
		

Crossrefs

A079413 Number of ways to write n as sum of powers p^e of distinct primes p such that e>0 and p does not divide n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 2, 1, 3, 1, 3, 2, 3, 3, 3, 2, 5, 3, 4, 3, 9, 3, 5, 4, 6, 4, 18, 3, 20, 8, 7, 8, 10, 6, 30, 9, 11, 8, 41, 5, 47, 11, 12, 13, 63, 10, 42, 13, 23, 16, 89, 13, 35, 20, 34, 28, 126, 11, 134, 35, 36, 44, 57, 15, 185, 40, 64, 19, 236, 31, 251, 64, 55, 54, 117, 24, 341
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Comments

a(p) = A051613(p) - 1 for p prime.

Examples

			13 = 11+2 = 3^3+2^2 = 2^3+5, therefore a(13)=3, (A051613(13)=4, A054685(13)=6, A079412(13)=18);
14 = 11+3 = 3^2+5, therefore a(14)=2, (A051613(14)=4, A054685(14)=7, A079412(14)=3).
		

Crossrefs

Showing 1-10 of 11 results. Next