A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108).
1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500, 94163002754652, 369507926510352
Offset: 1
Examples
Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ...
References
- Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, arXiv:math/0611106 [math.CO], 2006-2007.
- Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 10.
- F. Chapoton, Clusters.
- FindStat, St000784: The maximum of the length and the largest part of the integer partition.
- Sergey Fomin and Andrei Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Milan Janjic, Two Enumerative Functions.
- Joshua Marsh and Nathan Williams, Nesting Nonpartitions, J. Int. Seq., Vol. 25 (2022), Article 22.8.8.
- Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, and B. Andrei Bernevig, Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian, arXiv:1910.14048 [cond-mat.str-el], 2019.
- Hugh Thomas, Tamari Lattices and Non-Crossing Partitions in Types B and D, arXiv:math/0311334 [math.CO], 2003-2005.
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study, Vol. 56, No. 1 (2023), 1-17.
Crossrefs
Programs
-
Haskell
a051924 n = a051924_list !! (n-1) a051924_list = zipWith (-) (tail a000984_list) a000984_list -- Reinhard Zumkeller, May 25 2013
-
Magma
[Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016
-
Maple
C:= n-> binomial(2*n, n)/(n+1): seq((n+1)*C(n)-n*C(n-1), n=1..25); # Emeric Deutsch, Jan 08 2008 Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007 a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)): seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015
-
Mathematica
Table[Binomial[2n,n]-Binomial[2n-2,n-1],{n,30}] (* Harvey P. Dale, Jan 15 2012 *)
-
PARI
a(n)=binomial(2*n,n)-binomial(2*n-2,n-1) \\ Charles R Greathouse IV, Jun 25 2013
-
PARI
{a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1,n)} for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 08 2014
-
PARI
{a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)} for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
-
Sage
a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n)) [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015
Formula
G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n+1) = binomial(2*n, n) + 2*Sum_{i=0..n-1} binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004
a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009
Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005
a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006
The sequence 1,1,4,... has a(n) = C(2*n,n)-C(2*(n-1),n-1) = 0^n+Sum_{k=0..n} C(n-1,k-1)*A002426(k), and g.f. given by (1-x)/(1-2*x-2*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014
a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016
a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019
Sum_{n>=1} a(n)/8^n = 7/(4*sqrt(2)) - 1. - Amiram Eldar, May 06 2023
Extensions
Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar
Comments