cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A034173 a(n) is minimal such that prime factorizations of a(n), ..., a(n)+n-1 have same exponents.

Original entry on oeis.org

1, 2, 33, 19940, 204323, 380480345, 440738966073
Offset: 1

Views

Author

Dean Hickerson, Oct 01 1998

Keywords

Comments

a(8) > 10^13. - Donovan Johnson, Oct 20 2009
Don Reble has shown that a(8) < 1.9*10^42, cf. link.
From David Wasserman, Jan 05 2019: (Start)
a(8) <= 108111092880293127811946663766147737122,
a(9) <= 6850672946809600696044301071559918192380244,
a(10) <= 96037988156124494415303285590850571857698741869620,
a(11) <= 9044737840075556371215937303485030235666252755947862558252154847122. (End)

Examples

			a(4) = 19940 because 19940, ..., 19943 all have the form p^2 q r.
		

Crossrefs

Cf. A034174.
Cf. A052213, A052214, A175590, A218448. This sequence is the first column of A083785 and first row of A113456. The latter generalizes to arithmetic progressions with step d>=1. - M. F. Hasler, Oct 28 2012

Programs

  • PARI
    A034173(n)={my(f);for(k=1,oo,f=0;for(i=1,n, f==(f=vecsort(factor(k+n-i)[,2])) || i==1 || [k+=n-i; next(2)]);return(k))} \\ M. F. Hasler, Oct 23 2012

Formula

a(n) = A034174(n) - n + 1. - Max Alekseyev, Nov 10 2009
a(n) = A083785(n,1) = A113456(1,n); a(2) = A052213(1), a(3) = A052214(1), a(4) = A175590(1), a(5) = A218448(1), a(6) = A218448(62) = A218448(63)-1. - M. F. Hasler, Oct 28 2012

Extensions

a(7) from Donovan Johnson, Oct 20 2009
Don Reble link repaired by N. J. A. Sloane, Oct 24 2024

A066509 a(n) is the first of a triple of consecutive integers, each of which is both the product of three distinct primes and also the product of three primes counted with multiplicity.

Original entry on oeis.org

1309, 1885, 2013, 2665, 3729, 5133, 6061, 6213, 6305, 6477, 6853, 6985, 7257, 7953, 8393, 8533, 8785, 9213, 9453, 9821, 9877, 10281, 10945, 11605, 12453, 12565, 12801, 12857, 12993, 13053, 14133, 14313, 14329, 14465, 14817, 15085, 15265, 15805, 16113, 16133
Offset: 1

Views

Author

Jason Earls, Jan 04 2002

Keywords

Comments

A subsequence of A052214 and thus of A005238. - M. F. Hasler, Jan 05 2013
Also, the start of pairs of adjacent sphenic twins, i.e., a(n) = A215217(k) such that A215217(k+1) = A215217(k)+1. Therefore these triples might be called "sphenic triples". They form a subsequence of A242606. - M. F. Hasler, May 18 2014
Minimal difference is 4 which occurs at indices n = {316, 547, 566, 604, 666, 695, 821, 874, 979, ...}. - Zak Seidov, Jul 04 2020

Examples

			a(5) = 3729 because it along with 3730 and 3731 are all the product of three distinct primes.
		

Crossrefs

Subsequence of A052214 and hence of A005238.
Subsequence of A215217, A007675, A242606 and A168626.

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1};lst={};Do[If[f[n]&&f[n+1]&&f[n+2],AppendTo[lst,n]],{n,9!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 04 2010 *)
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,17000}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 28 2025 *)
  • PARI
    Trip(n) = { local(f); f=factor(n); if (matsize(f)[1] != 3, return(0)); for(i=1, 3, if (f[i, 2] != 1, return(0))); return(1); } { n=0; for (m=1, 10^10, if (!Trip(m) || !Trip(m+1) || !Trip(m+2), next); write("b066509.txt", n++, " ", m); if (n==1000, return) ) } \\ Harry J. Smith, Feb 19 2010
    
  • PARI
    A066509(n,show_all=0,a=2*3*5,s=[1,1,1]~)={until( !n-- || !a++, until(, factor(a+2)[,2]!=s && (a+=3) && next; factor(a+1)[,2]!=s && (a+=2) && next; factor(a)[,2]==s && break; factor(a+3)[,2]==s && a++ && break; a+=4);show_all && print1(a",")); a} \\ M. F. Hasler, Jan 05 2013
    
  • PARI
    is3dp(n)=my(f=factor(n));matsize(f)==[3,2]&&vecmax(f[,2])==1
    list(lim)=my(v=List(),t);forprime(p=17,lim\15, forprime(q=5,min(p-1,lim\3), forprime(r=3,min(q-1,lim\(p*q)), t=p*q*r; if(t%4==1 && is3dp(t+1) && is3dp(t+2), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Jan 05 2013; updated Jan 22 2025
    
  • PARI
    list(lim)=my(v=List(),ct); forfactored(n=1309,lim\1+2, if(n[2][,2]==[1,1,1]~, if(ct++==3, listput(v,n[1]-2)), ct=0)); Vec(v) \\ Charles R Greathouse IV, Aug 30 2022

Formula

a(n) == 1 (mod 4). - Zak Seidov, Mar 31 2020

Extensions

Definition clarified by Harvey P. Dale, Feb 28 2025

A175590 Numbers k with prime signature(k) = prime signature(k+1) = prime signature(k+2) = prime signature(k+3).

Original entry on oeis.org

19940, 49147, 54585, 118923, 136825, 183554, 204323, 204324, 262932, 304675, 361275, 361322, 476377, 486962, 506905, 619722, 668211, 734948, 854018, 937025, 938203, 999649, 1062025, 1118275, 1335572, 1336075, 1356324, 1466225, 1541491
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 2^2 * 5 * 997; a(1)+1 = 3 * 17^2 * 23; a(1)+2 = 2 * 13^2 * 59; a(1)+3 = 7^2 * 11 * 37. All have prime signature {2, 1, 1}.
		

Crossrefs

Cf. A052213, A052214, A218448. Subsequence of A070284.

Programs

  • Mathematica
    SequencePosition[Table[Sort[FactorInteger[n][[All,2]]],{n,1542000}],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* The program will take a long time to run. *) (* Harvey P. Dale, Jun 09 2021 *)
  • PARI
    sig(n)={vecsort(factor(n)[,2])}; s=sig(1);for(n=1,1e6,t=sig(n+1);if(s==t&t==sig(n+2)&t==sig(n+3),print1(n-1,","));s=t)
    
  • PARI
    is_A175590(n)={my(f(n)=vecsort(factor(n)[,2]),t=f(n));!for(i=1,3,f(n+i)!=t & return)}  \\ M. F. Hasler, Nov 01 2012

A218448 First of a run of 5 consecutive numbers with same prime signature.

Original entry on oeis.org

204323, 3252571, 5205074, 7201674, 20182921, 28387953, 36193650, 43216722, 51049537, 56155074, 57070850, 61961315, 62167075, 65425473, 76647074, 82507473, 92658049, 95943321, 100498849, 107236449, 109751473, 110899321, 112198075, 112477849, 116736323
Offset: 1

Views

Author

M. F. Hasler, Oct 28 2012

Keywords

Comments

A number n is in this sequence iff n and n+1 is in A175590; also: iff n and n+2 are in A052214 (in which case n+1 is in A052214, too); and also: iff {n,n+1,n+2,n+3} are in A052213.
A034173(6) = A218448(62) = A218448(63)-1 is the least term n such that n+1 is also in the sequence.

Crossrefs

Programs

  • PARI
    is_A218448(n)={my(f);!for(i=0,4,f!=(f=vecsort(factor(n+i)[,2])) & i & return)}
    
  • PARI
    f(k)=vecsort(factor(k)[,2]~,,4)
    t=f(n=2);while(n<1e8, for(i=n+1, n+4, tt=f(i); if(tt!=t, n=i; t=tt; next(2))); print1(n", "); n++) \\ Charles R Greathouse IV, Oct 28 2012

Extensions

a(6)-a(8) from Charles R Greathouse IV, Oct 28 2012
a(9)-a(25) from Donovan Johnson, Oct 28 2012
Values up to a(140) computed using b175590.txt from Charles R Greathouse IV - M. F. Hasler, Oct 28 2012

A075039 Smallest of three consecutive squarefree numbers having equal numbers of prime factors.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1309, 1345, 1401, 1641, 1761, 1837, 1885, 1893, 1941, 1981, 2013, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2665, 2721, 2733, 3097, 3385, 3601, 3693, 3729, 3865
Offset: 1

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Examples

			33 is a member as 33, 34 and 35 are of the form p*q where p and q are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], AllTrue[# + Range[0, 2], SquareFreeQ] && Equal @@ PrimeNu[# + Range[0, 2]] &] (* Amiram Eldar, Feb 24 2021 *)

Formula

A001221(a(n)) = A001222(a(n)) = A001221(a(n)+1) = A001222(a(n)+1).

Extensions

More terms from Matthew Conroy, Sep 08 2002
Edited by Reinhard Zumkeller, Jul 14 2003
Offset corrected by Amiram Eldar, Feb 24 2021

A113458 Least k such that k, k+n and k+2n have the same prime signature.

Original entry on oeis.org

33, 3, 155, 3, 77, 5, 51, 3, 77, 3, 35, 5, 50, 3, 187, 6, 21, 5, 39, 3, 145, 33, 39, 5, 69, 39, 91, 3, 33, 7, 15, 12, 221, 3, 28, 7, 21, 3, 55, 3, 33, 5, 91, 66, 209, 69, 35, 5, 50, 3, 115, 39, 141, 5, 51, 6, 145, 85, 15, 7, 21, 93, 95, 3, 57, 5, 51, 3, 65, 15, 35, 7, 69, 55, 287, 6
Offset: 1

Views

Author

David Wasserman, Jan 08 2006

Keywords

Comments

Third row of A113456.

Examples

			a(4) = 3 because 3, 7 and 11 have the same prime signature.
		

Crossrefs

Programs

  • Maple
    s:= n-> sort(map(i-> i[2], ifactors(n)[2])):
    a:= proc(n) option remember; local k; for k
          while s(k)<>s(k+n) or s(k)<>s(k+2*n) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 28 2018
  • Mathematica
    s[n_] := FactorInteger[n][[All, 2]] // Sort;
    a[n_] := Module[{k}, For[k = 2, True, k++, If[s[k] == s[k+n] == s[k+2n], Return[k]]]];
    Array[a, 100] (* Jean-François Alcover, Nov 05 2020 *)

A218455 First of a run of 6 consecutive numbers with same prime signature.

Original entry on oeis.org

380480345, 2713001274, 6282718946, 7209536449, 9809067073, 10684724346, 12008728850, 14824913049, 17231547073, 17552118546, 17659180314, 18036555273, 20473171322, 21507097001, 23676804346, 24742649321, 25401767522, 25694056449, 27656894273, 28259097818
Offset: 1

Views

Author

M. F. Hasler, Oct 29 2012

Keywords

Comments

A number n is in this sequence iff n and n+1 is in A218448; see the comment there for other characterizations in terms of membership in A175590 or A052214 or A052213.

Crossrefs

Programs

  • PARI
    is_A218455(n)={my(s(n)=vecsort(factor(n)[,2]),t=s(n));!for(m=n+1,n+5, t!=s(m) & return)}

Extensions

a(2)-a(20) from Donovan Johnson, Oct 29 2012

A279767 Numbers m such that m and m+2 have the same prime signature.

Original entry on oeis.org

3, 5, 11, 17, 18, 29, 33, 41, 50, 54, 55, 59, 71, 85, 91, 93, 101, 107, 137, 141, 143, 149, 159, 179, 183, 185, 191, 197, 201, 203, 213, 215, 217, 219, 227, 235, 239, 242, 247, 248, 265, 269, 281, 299, 301, 303, 306, 311, 319, 321, 327, 339, 340, 347, 348, 391, 393, 411, 413
Offset: 1

Views

Author

Altug Alkan, Dec 18 2016

Keywords

Comments

The sequence contains some terms such that m and m + 2k (k > 1) have the same prime signature. For some terms where m and m + 2k share the same prime signature this means that every alternate element between, and including m and m + 2k have the same prime signature. The first such example is where a(41951) = 402677, a(41953) = 402679, and a(41955) = 402681, share the same prime signature {1, 1}. Also the remaining alternate terms excluding endpoints share the same prime signature. Using the above example, a(41952) = 402678 and a(41954) = 402680 share the prime signature {1,1,3}. - Torlach Rush, Feb 25 2018

Examples

			18 is a term because 18 = 2 * 3^2 and 18 + 2 = 20 = 2^2 * 5.
19 is not a term because it is prime and 21 is the product of two primes, so the prime signatures are different.
		

Crossrefs

Programs

  • Mathematica
    primeSignature[n_] := Sort[Transpose[FactorInteger[n]][[2]]]; Select[ Range[2, 1000], primeSignature[#] == primeSignature[# + 2] &] (* Adapted from A052213 *)
  • PARI
    isok(n) = vecsort(factor(n)[,2]) == vecsort(factor(n+2)[,2]); \\ Michel Marcus, Feb 25 2018

A333056 Numbers k such that k, k+1 and k+2 have different prime signatures and d(k) = d(k+1) = d(k+2), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

59318, 72063, 72224, 184190, 185192, 215648, 300320, 355454, 362624, 384128, 548936, 550016, 640790, 682624, 707966, 723896, 758888, 828872, 828873, 858494, 860030, 888704, 901503, 963486, 963710, 993375, 1039742, 1039743, 1081214, 1248776, 1261897, 1340630
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2020

Keywords

Comments

Apparently most of the numbers k such that d(k) = d(k+1) = d(k+2) (A005238) are terms of A052214, i.e., k, k+1 and k+2 have the same prime signature.
Of the first 10000 terms of A005238, 6406 are also in A052214, 3578 have a pair (k and k+1, k and k+2, or k+1 and k+2) with the same prime signature, and only 16 are in this sequence.

Examples

			59318 is a term since d(59318) = d(59319) = d(59320) = 16, and the prime signatures of these 3 numbers are different: 59318 = 2 * 7 * 19 * 223, 59319 = 3^3 * 13^3, and 59320 = 2^3 * 5 * 1483 have 3 different ordered prime signatures (A124010): [1, 1, 1, 1], [3, 3], and [1, 1, 3].
		

Crossrefs

Subsequence of A005238.

Programs

  • Mathematica
    psig[n_] := Sort @ FactorInteger[n][[;; , 2]]; d[sig_] := Times @@ (sig + 1); vsig = psig /@ Range[2, 4]; seqQ[v_] := Length@Union[v] == 3 && Length @ Union[d /@ v] == 1; seq = {}; Do[If[seqQ[vsig], AppendTo[seq, n - 3]]; vsig = Join[Rest[vsig], {psig[n]}], {n, 5, 10^6}]; seq

A359746 Numbers k such that k, k+1 and k+2 have the same ordered prime signature.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1309, 1345, 1401, 1641, 1761, 1837, 1885, 1893, 1941, 1981, 2013, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2665, 2721, 2733, 3097, 3385, 3601, 3693, 3729, 3865, 3901, 3957
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2023

Keywords

Comments

First differs from its subsequence A039833 at n = 17, and from its subsequence A075039 at n = 53.
The ordered prime signature of a number n is the list of exponents of the distinct prime factors in the prime factorization of n, in the order of the prime factors (A124010).
Can 4 consecutive integers have the same ordered prime signature? There are no such quadruples below 10^9.
The answer to the question above is no. Two out of every four consecutive numbers are even and their powers of 2 are different. - Ivan N. Ianakiev, Jan 13 2023

Examples

			33 is a term since 33 = 3^1 * 11^1, 34 = 2^1 * 17^1, and 35 = 5^1 * 7^1 have the same ordered prime signature, (1, 1).
4923 is a term since 4923 = 3^2 * 547^1, 4924 = 2^2 * 1231^1, and 4925 = 5^2 * 197^1 have the same ordered prime signature, (2, 1).
603 is a term of A052214 but not a term of this sequence, since 603 = 3^2 * 67^1, 604 = 2^2 * 151^1, and 605 = 5^1 * 11^2 have different ordered prime signatures, (2, 1) or (1, 2).
		

Crossrefs

Subsequence of A052214 and A359745.
Subsequences: A039833, A075039.

Programs

  • Mathematica
    q[n_] := SameQ @@ (FactorInteger[#][[;; , 2]]& /@ (n + {0, 1, 2})); Select[Range[2, 4000], q]
  • PARI
    lista(nmax) = {my(e1 = [], e2 = factor(2)[,2]); for(n = 3, nmax, e3 = factor(n)[,2]; if(e1 == e2 && e2 == e3, print1(n-2, ", ")); e1 = e2; e2 = e3); }
Showing 1-10 of 11 results. Next