cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005359 a(n) = n! if n is even, otherwise 0 (from Taylor series for cos x).

Original entry on oeis.org

1, 0, 2, 0, 24, 0, 720, 0, 40320, 0, 3628800, 0, 479001600, 0, 87178291200, 0, 20922789888000, 0, 6402373705728000, 0, 2432902008176640000, 0, 1124000727777607680000, 0, 620448401733239439360000, 0
Offset: 0

Views

Author

Keywords

Comments

Normally sequences like this are not included, since with the alternating 0's deleted it is already in the database.
Stirling transform of a(n)=[0,2,0,24,0,720,...] is A052841(n)=[0,2,6,38,270,...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n-1)=[1,0,2,0,24,0,...] is A000670(n-1)=[1,1,3,13,75,...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n-1)=[0,0,2,0,24,0,...] is A052875(n-1)=[0,0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of (-1)^n*A052811(n)=[0,2,-6,46,-340,...] is a(n)=[0,2,0,24,0,...]. - Michael Somos, Mar 04 2004
Also n-th derivative of arctanh(x) at x=0. - Michel Lagneau, Aug 13 2012
Binomial convolution square of A177145 (with offset 0) because each permutation in S_{2n} uniquely determines a bi-partition of its elements into even and odd cycles and these are both enumerated by A177145. - Michael Somos, Mar 19 2019

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought".

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Equals the first right hand column of A167565.
Equals the first left hand column of A167568.
(End)
Cf. A177145.
Bisection (even part) gives A010050.

Programs

  • Maple
    BB:={E=Prod(Z,Z),S=Union(Epsilon,Prod(S,E))}: ZL:=[S,BB, labeled]: > seq(count(ZL,size=n),n=0..25); # Zerinvary Lajos, Apr 22 2007
    a:=n->n!+(-1)^n*n!: seq(a(n)/2, n=0..25); # Zerinvary Lajos, Mar 25 2008
  • Mathematica
    Riffle[Range[0,30,2]!,0] (* Harvey P. Dale, Nov 16 2011 *)
    a[ n_] := If[n >= 0 && EvenQ[n], n!, 0]; (* Michael Somos, Mar 19 2019 *)
  • PARI
    {a(n) = if(n<0, 0, if(n%2, 0, n!))}; /* Michael Somos, Mar 04 2004 */

Formula

E.g.f. 1/(1-x^2) = d/dx log(sqrt((1+x)/(1-x))). a(2n)=(2n)!, a(2n+1)=0. - Michael Somos, Mar 04 2004
a(n) = Product_{k=0..n/2-1} binomial(n-2k,2)*2^(n/2) for even n. - Geoffrey Critzer, Jun 05 2016
From Ilya Gutkovskiy, Jun 05 2016: (Start)
D-finite with recurrence a(n) = n*(n - 1)*a(n-2), a(0)=1, a(1)=0.
a(n) = n!*((-1)^n + 1)/2. (End)

A052801 A simple grammar: labeled pairs of sequences of cycles.

Original entry on oeis.org

1, 2, 8, 46, 342, 3108, 33324, 411360, 5741856, 89379120, 1534623936, 28804923024, 586686138384, 12885385945248, 303537419684064, 7633673997722496, 204125888803996800, 5782960189212871680
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Cycle(Z),B=Sequence(C),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/(1+Log[1-x])^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • Maxima
    makelist(sum((-1)^(n-k)*stirling1(n, k)*(k+1)!, k, 0, n), n, 0, 17); /* Bruno Berselli, May 25 2011 */

Formula

E.g.f.: 1/(-1+log(-1/(-1+x)))^2.
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*(k+1)!. - Vladeta Jovovic, Sep 21 2003
a(n) = D^n(1/(1-x)^2) evaluated at x = 0, where D is the operator exp(x)*d/dx. Cf. A052811. - Peter Bala, Nov 25 2011
a(n) ~ n! * n*exp(n)/(exp(1)-1)^(n+2). - Vaclav Kotesovec, Sep 30 2013
From Anton Zakharov, Aug 07 2016: (Start)
a(n) = A007840(n) + A215916(n).
a(n) = Sum_{k=2..n+1} k!*s(n,k) where s(n,k) is the unsigned Stirling number of the first kind, (A132393). (End)
a(0) = 1; a(n) = Sum_{k=1..n} (k/n + 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 19 2023

A346921 Expansion of e.g.f. 1 / (1 - log(1 - x)^2 / 2).

Original entry on oeis.org

1, 0, 1, 3, 17, 110, 874, 8064, 85182, 1012248, 13369026, 194245590, 3079135806, 52880064588, 978038495316, 19381794788160, 409702099828104, 9201877089355584, 218832476773294008, 5493266481129425064, 145153549897858762776, 4027310838211114515600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - Log[1 - x]^2/2), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^2/2))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/2^k); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * |Stirling1(k,2)| * a(n-k).
a(n) ~ n! * exp(sqrt(2)*n) / (sqrt(2) * (exp(sqrt(2)) - 1)^(n+1)). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * |Stirling1(n,2*k)|/2^k. - Seiichi Manyama, May 06 2022

A353118 Expansion of e.g.f. 1/(1 + log(1 - x)^3).

Original entry on oeis.org

1, 0, 0, 6, 36, 210, 2070, 24864, 310632, 4337544, 68922360, 1205002656, 22844264256, 469287123552, 10397824478496, 246800350393344, 6246190572981120, 167972669001740160, 4783274802508890240, 143775432034543203840, 4548946867429143444480
Offset: 0

Views

Author

Seiichi Manyama, May 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1+Log[1-x]^3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 04 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)^3)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*abs(stirling(j, 3, 1))*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1)));

Formula

a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * |Stirling1(k,3)| * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * |Stirling1(n,3*k)|.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (3 * (exp(1) - 1)^(n+1)). - Vaclav Kotesovec, May 07 2022

A353200 Expansion of e.g.f. 1/(1 + log(1 - x)^5).

Original entry on oeis.org

1, 0, 0, 0, 0, 120, 1800, 21000, 235200, 2693880, 35947800, 609615600, 12504927600, 281242996320, 6545492073120, 155873050569600, 3849612346944000, 100588974863402880, 2818516832681523840, 84728757269204858880, 2706516690047188416000
Offset: 0

Views

Author

Seiichi Manyama, May 06 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)^5)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=120*sum(j=1, i, binomial(i, j)*abs(stirling(j, 5, 1))*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*abs(stirling(n, 5*k, 1)));

Formula

a(0) = 1; a(n) = 120 * Sum_{k=1..n} binomial(n,k) * |Stirling1(k,5)| * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * |Stirling1(n,5*k)|.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (5 * (exp(1) - 1)^(n+1)). - Vaclav Kotesovec, May 07 2022

A353119 Expansion of e.g.f. 1/(1 - log(1 - x)^4).

Original entry on oeis.org

1, 0, 0, 0, 24, 240, 2040, 17640, 202776, 3066336, 52446720, 933636000, 17416490784, 350580364992, 7719355635264, 184232862777600, 4691944607751936, 126358891201529856, 3591751011211717632, 107772466927523060736, 3408777017097439186944
Offset: 0

Views

Author

Seiichi Manyama, May 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-Log[1-x]^4),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 13 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1-x)^4)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i, j)*abs(stirling(j, 4, 1))*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1)));

Formula

a(0) = 1; a(n) = 24 * Sum_{k=1..n} binomial(n,k) * |Stirling1(k,4)| * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * |Stirling1(n,4*k)|.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (4 * (exp(1) - 1)^(n+1)). - Vaclav Kotesovec, May 07 2022

A357881 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 0, 2, 14, 0, 1, 0, 0, 6, 88, 0, 1, 0, 0, 6, 46, 694, 0, 1, 0, 0, 0, 36, 340, 6578, 0, 1, 0, 0, 0, 24, 210, 3308, 72792, 0, 1, 0, 0, 0, 0, 240, 2070, 36288, 920904, 0, 1, 0, 0, 0, 0, 120, 2040, 24864, 460752, 13109088, 0, 1, 0, 0, 0, 0, 0, 1800, 17640, 310632, 6551424, 207360912, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2022

Keywords

Examples

			Square array begins:
  1,   1,   1,   1,   1,   1, ...
  0,   1,   0,   0,   0,   0, ...
  0,   3,   2,   0,   0,   0, ...
  0,  14,   6,   6,   0,   0, ...
  0,  88,  46,  36,  24,   0, ...
  0, 694, 340, 210, 240, 120, ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = sum(j=0, n, (k*j)!*abs(stirling(n, k*j, 1)));
    
  • PARI
    T(n, k) = if(k==0, 0^n, n!*polcoef(1/(1-(-log(1-x+x*O(x^n)))^k), n));

Formula

For k > 0, e.g.f. of column k: 1/(1 - (-log(1-x))^k).
T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n,j) * |Stirling1(j,k)| * T(n-j,k).
Showing 1-7 of 7 results.