cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000276 Associated Stirling numbers.

Original entry on oeis.org

3, 20, 130, 924, 7308, 64224, 623376, 6636960, 76998240, 967524480, 13096736640, 190060335360, 2944310342400, 48503818137600, 846795372595200, 15618926924697600, 303517672703078400, 6198400928176128000, 132720966600284160000, 2973385109386137600000
Offset: 4

Views

Author

Keywords

Comments

a(n) is also the number of permutations of n elements, without any fixed point, with exactly two cycles. - Shanzhen Gao, Sep 15 2010

Examples

			a(4) = 3 because we have: (12)(34),(13)(24),(14)(23). - _Geoffrey Critzer_, Nov 03 2012
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation).

Crossrefs

A diagonal of triangle in A008306.

Programs

  • Mathematica
    nn=25;a=Log[1/(1-x)]-x;Drop[Range[0,nn]!CoefficientList[Series[a^2/2,{x,0,nn}],x],4]  (* Geoffrey Critzer, Nov 03 2012 *)
    a[n_] := (n-1)!*(HarmonicNumber[n-2]-1); Table[a[n], {n, 4, 23}] (* Jean-François Alcover, Feb 06 2016, after Gary Detlefs *)
  • PARI
    a(n) = (n-1)!*sum(i=2, n-2, 1/i); \\ Michel Marcus, Feb 06 2016

Formula

a(n) = (n-1)!*Sum_{i=2..n-2} 1/i = (n-1)!*(Psi(n-1)+gamma-1). - Vladeta Jovovic, Aug 19 2003
With alternating signs: Ramanujan polynomials psi_3(n-2, x) evaluated at 1. - Ralf Stephan, Apr 16 2004
E.g.f.: ((x+log(1-x))^2)/2. [Corrected by Vladeta Jovovic, May 03 2008]
a(n) = Sum_{i=2..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 15 2010
a(n) = (n+3)!*(h(n+2)-1), with offset 0, where h(n)=sum(1/k,k=1..n). - Gary Detlefs, Sep 11 2010
Conjecture: (-n+2)*a(n) +(n-1)*(2*n-5)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Jul 18 2015
Conjecture: a(n) +2*(-n+2)*a(n-1) +(n^2-6*n+10)*a(n-2) +(n-3)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 18 2015
a(n) = A000254(n-1) - (n-1)! - (n-2)!. - Anton Zakharov, Sep 24 2016

Extensions

More terms from Christian G. Bower

A058298 Triangle n!/(n-k), 1 <= k < n, read by rows.

Original entry on oeis.org

2, 3, 6, 8, 12, 24, 30, 40, 60, 120, 144, 180, 240, 360, 720, 840, 1008, 1260, 1680, 2520, 5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320, 45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800
Offset: 2

Views

Author

Leroy Quet, Dec 07 2000

Keywords

Comments

Together with 1, numbers n such that n divides k! if and only if k! >= n. - Charles R Greathouse IV, Aug 16 2016

Examples

			Triangle begins:
      2;
      3,     6;
      8,    12,    24;
     30,    40,    60,   120;
    144,   180,   240,   360,   720;
    840,  1008,  1260,  1680,  2520,   5040;
   5760,  6720,  8064, 10080, 13440,  20160,  40320;
  45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880;
  ...
		

Crossrefs

Columns k=1..5 are A001048(n-1), A052747, A052759, A052778, A052794.
Row sums are A052881.

Programs

  • Mathematica
    Flatten[Table[n!/(n-k),{n,2,10},{k,n-1}]] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    T(n,k)={if(kAndrew Howroyd, Aug 08 2020

Formula

Sum_{n>=2} Sum_{k=1..n-1} 1/T(n, k) = e/2 (A019739). - Amiram Eldar, Jun 29 2025

A094485 T(n, k) = Stirling1(n+1, k) - Stirling1(n, k-1), for 1 <= k <= n. Triangle read by rows.

Original entry on oeis.org

-1, 2, -2, -6, 9, -3, 24, -44, 24, -4, -120, 250, -175, 50, -5, 720, -1644, 1350, -510, 90, -6, -5040, 12348, -11368, 5145, -1225, 147, -7, 40320, -104544, 105056, -54152, 15680, -2576, 224, -8, -362880, 986256, -1063116, 605556, -202041, 40824, -4914, 324, -9, 3628800, -10265760, 11727000, -7236800
Offset: 1

Views

Author

Vladeta Jovovic, Jun 05 2004

Keywords

Examples

			Triangle starts:
[n\k    1        2       3      4      5      6     7  8]
[1]    -1;
[2]     2,      -2;
[3]    -6,       9,     -3;
[4]    24,     -44,     24,     -4;
[5]  -120,     250,   -175,     50,    -5;
[6]   720,   -1644,   1350,   -510,    90,    -6;
[7] -5040,   12348, -11368,   5145, -1225,   147,   -7;
[8] 40320, -104544, 105056, -54152, 15680, -2576,  224,  -8;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> Stirling1(n+1, k) - Stirling1(n, k-1);
    seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, May 26 2020
  • Mathematica
    Table[StirlingS1[n+1,k]-StirlingS1[n,k-1],{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 25 2024 *)

Formula

E.g.f.: -x*y*(1+y)^(x-1). [T(n,k) = n!*[x^k]([y^n] -x*y*(y+1)^(x-1)).]
The matrix inverse of the Worpitzky triangle. More precisely:
T(n, k) = -n!*InvW(n, k) where InvW is the matrix inverse of A028246. - Peter Luschny, May 26 2020

Extensions

Offset of k shifted and edited by Peter Luschny, May 26 2020

A087301 a(n) = n!*Sum_{i=1..n-1} (-1)^(i+1)/i.

Original entry on oeis.org

2, 3, 20, 70, 564, 3108, 30624, 230256, 2705760, 25771680, 352805760, 4067556480, 63651813120, 861371884800, 15176802816000, 235775183616000, 4620563523072000, 81032645804544000, 1748700390205440000
Offset: 2

Views

Author

Vladeta Jovovic, Oct 20 2003

Keywords

Comments

Stirling transform of A052882(n)=[0,2,9,52,375,...] is a(n+1)=[0,2,3,20,...]. - Michael Somos, Mar 04 2004

Crossrefs

Programs

  • Mathematica
    Rest[Table[n!Sum[(-1)^(i+1)/i,{i,n-1}],{n,20}]] (* Harvey P. Dale, Oct 24 2011 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(log(1+x+x*O(x^n))*x/(1-x),n))

Formula

E.g.f.: x*log(1+x)/(1-x). a(n) = 1/2*(-1)^n*n!*(2*(-1)^n*log(2)+Psi(1/2+1/2*n)-Psi(1/2*n)).
a(n) ~ n! * log(2). - Vaclav Kotesovec, Jul 01 2018

A278463 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 2, 3, 9, 4, 4, 36, 44, 12, 5, 110, 355, 250, 48, 6, 300, 2010, 3480, 1644, 240, 7, 777, 9625, 32235, 35728, 12348, 1440, 8, 1960, 42056, 242200, 498512, 390880, 104544, 10080, 9, 4860, 173754, 1605744, 5466321, 7745220, 4581036, 986256, 80640, 10, 11880, 691620, 9807840, 51506490, 117711720, 123330680, 57537360, 10265760, 725760
Offset: 1

Views

Author

Gheorghe Coserea, Jan 18 2017

Keywords

Examples

			A(x;t) = x + (2*t+2)*x^2/2! + (3*t^2+9*t+4)*x^3/3! + (4*t^3+36*t^2+44*t+12)*x^4/4! + ...
Triangle starts:
n\k  [1]      [2]      [3]      [4]      [5]      [6]      [7]
[1]  1;
[2]  2,       2;
[3]  3,       9,       4;
[4]  4,       36,      44,      12;
[5]  5,       110,     355,     250,     48;
[6]  6,       300,     2010,    3480,    1644,    240;
[7]  7,       777,     9625,    32235,   35728,   12348,   1440;
[8]  ...
		

Programs

  • PARI
    N=11; x = 'x+O('x^N);
    concat(apply(p->Vec(p), Vec(serlaplace((t-1)*log(1-x) - log(-x + exp(t*log(1-x))) - x))))

Formula

A(x;t) = Sum {n>=1} P_n(t)*x^n/n! = (t-1)*log(1-x) - log(-x + exp(t*log(1-x))) - x.
A278458(x;t) = serreverse(A(-x;t))(-x).
A098558(n-1) = P_n(0), A032184(n) = P_n(1).
A052881(n) = T(n,n-1).
Showing 1-5 of 5 results.