cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A249630 Sums of the composite numbers placed between two consecutive prime numbers (A054265), sorted in increasing order.

Original entry on oeis.org

0, 4, 6, 12, 18, 27, 30, 42, 45, 60, 63, 72, 102, 108, 117, 130, 135, 138, 150, 170, 180, 192, 198, 207, 228, 240, 243, 250, 270, 280, 282, 297, 312, 315, 320, 333, 348, 380, 387, 420, 430, 432, 462, 495, 522, 570, 585, 600, 618, 642, 651, 660, 670, 675, 693
Offset: 1

Views

Author

Yves Debeuret, Nov 02 2014

Keywords

Comments

The first number that occurs more than once is 2592 = a(143) = a(144). - Robert Israel, Nov 11 2014

Crossrefs

Cf. A054265.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor(N/2))]):
    B:= [seq((Primes[i+1]+Primes[i])*(Primes[i+1]-Primes[i]-1)/2, i=1..nops(Primes)-1)]:
    sort(select(`<=`,B,N)); # Robert Israel, Nov 11 2014
  • Mathematica
    With[{nn=60},Take[Sort[Total[Range[#[[1]]+1,#[[2]]-1]]&/@Partition[ Prime[ Range[3*nn]],2,1]],nn]] (* Harvey P. Dale, Sep 25 2015 *)
  • PARI
    lista() = {vitp = readvec("c:/gp/bfiles/b029707.txt"); for (k=1, #vitp, v = []; for (n=1, k, vn = vitp[n]; for (j=1, vn, newv = (prime(j+1)+prime(j))*(prime(j+1)-prime(j)-1)/2; if (! vecsearch(v, newv), v = vecsort(concat(v, newv)));););/* to see intermediate results for (i=1, #v, if (v[i] <= newv, print1(v[i], ", "));); print();*/); v;} \\ Michel Marcus, Nov 11 2014

Extensions

More terms from Michel Marcus, Nov 11 2014

A373671 Length of the n-th maximal antirun of prime-powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 7, 26, 27, 1007, 5558, 5734, 31209
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A000961 without 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of prime-powers begin:
   2
   3
   4
   5   7
   8
   9  11  13  16
  17  19  23  25  27  29  31
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671 (this sequence)
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
A000961 lists the powers of primes (including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers (not including 1 A024619).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A025528(A006549(n)).

A373672 Length of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

5, 3, 1, 6, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A361102 or A024619 with 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672 (this sequence), firsts (3,7,2,25,1,4)
- min A373575
- max A255346
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A356068(A255346(n)).

A373675 Sums of maximal runs of powers of primes A000961.

Original entry on oeis.org

15, 24, 11, 13, 33, 19, 23, 25, 27, 29, 63, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 255, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

A000040 lists the primes, differences A001223.
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
See link for composite, prime, nonsquarefree, and squarefree runs.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Total/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most

A373679 Sums of maximal antiruns of non-prime-powers.

Original entry on oeis.org

43, 53, 21, 163, 34, 35, 74, 39, 126, 45, 144, 51, 106, 55, 56, 57, 180, 128, 134, 69, 216, 75, 76, 77, 324, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119, 242, 123, 379, 262, 133, 134, 135, 414, 141, 142, 143
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2024

Keywords

Comments

An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
  51
  52  54
  55
  56
  57
  58  60  62
  63  65
		

Crossrefs

See link for composite, prime, nonsquarefree, and squarefree runs/antiruns.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679 (this sequence), min A373575, max A255346, length A373672.
A000040 lists the primes, differences A001223.
A000961 lists all powers of primes. A246655 lists just prime-powers.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

A373673 First element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

1, 7, 11, 13, 16, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373674.
Consists of all powers of primes k such that k-1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For composite antiruns we have A005381, max A068780, length A373403.
For prime antiruns we have A006512, max A001359, length A027833.
For composite runs we have A008864, max A006093, length A176246.
For prime runs we have A025584, max A067774, length A251092 or A175632.
For runs of prime-powers:
- length A174965
- min A373673 (this sequence)
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most

A373676 First element of each maximal run of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 14, 18, 20, 24, 26, 28, 30, 33, 38, 42, 44, 48, 50, 54, 60, 62, 65, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 129, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373677.
Consists of 1 and all non-prime-powers k such that k-1 is a power of a prime.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676 (this sequence)
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Select[Range[100],#==1||!PrimePowerQ[#]&&PrimePowerQ[#-1]&]

A373678 Sums of maximal runs of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 29, 18, 63, 24, 26, 28, 30, 138, 117, 42, 135, 48, 153, 280, 60, 125, 131, 207, 72, 380, 80, 82, 430, 651, 297, 102, 315, 108, 333, 819, 369, 126, 259, 670, 138, 1296, 150, 770, 800, 495, 168, 513, 880, 180, 1674, 192, 585, 198, 2255, 2387, 675
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of non-powers of primes begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

A000040 lists the primes, differences A001223.
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
See link for composite, prime, nonsquarefree, and squarefree runs.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1==#2&]//Most

A061214 Product of composite numbers between the n-th and (n+1)st primes.

Original entry on oeis.org

1, 4, 6, 720, 12, 3360, 18, 9240, 11793600, 30, 45239040, 59280, 42, 91080, 311875200, 549853920, 60, 1072431360, 328440, 72, 2533330800, 531360, 4701090240, 60072730099200, 970200, 102, 1157520, 108, 1367520, 1063186156509747740870400000, 2146560, 43191973440
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Examples

			a(4) = 8 * 9 * 10 = 720. 7 is the fourth prime and 11 is the fifth prime. a(5) = 12 as 11 and 13 both are primes.
		

Crossrefs

Cf. A046933 and A054265 (number and sum of these composites).

Programs

  • Haskell
    a061214 n = a061214_list !! (n-1)
    a061214_list = f a000040_list where
       f (p:ps'@(p':ps)) = (product [p+1..p'-1]) : f ps'
    -- Reinhard Zumkeller, Jun 22 2011
    
  • Maple
    A061214 := proc(n)
        local k ;
        product(k,k=ithprime(n)+1..ithprime(n+1)-1) ;
    end proc: # R. J. Mathar, Apr 23 2013
  • Mathematica
    Table[Times@@Range[Prime[n]+1,Prime[n+1]-1],{n,30}] (* Harvey P. Dale, Jun 14 2011 *)
    Times@@Range[#[[1]]+1,#[[2]]-1]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    { n=0; q=2; forprime (p=3, prime(2001), a=1; for (i=q + 1, p - 1, a*=i); q=p; write("b061214.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 19 2009
    
  • PARI
    v=primes(100);for(i=1,#v-1,v[i]=prod(j=v[i]+1,v[i+1]-1,j));vecextract(v,"1..-2") \\ Charles R Greathouse IV, Feb 27 2012
    
  • Python
    from math import prod
    from sympy import prime
    def A061214(n): return prod(i for i in range(prime(n)+1,prime(n+1))) # Chai Wah Wu, Jul 10 2022

Formula

A006530(a(n)) = A052248(n) for n > 1. - Reinhard Zumkeller, Jun 22 2011

Extensions

More terms from James Sellers, Apr 24 2001
Better definition from T. D. Noe, Jan 21 2008

A373404 Sum of the n-th maximal antirun of composite numbers differing by more than one.

Original entry on oeis.org

18, 9, 36, 15, 54, 21, 46, 25, 26, 27, 90, 33, 34, 35, 74, 39, 126, 45, 94, 49, 50, 51, 106, 55, 56, 57, 180, 63, 64, 65, 134, 69, 216, 75, 76, 77, 158, 81, 166, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373403.
An antirun of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row sums of:
   4   6   8
   9
  10  12  14
  15
  16  18  20
  21
  22  24
  25
  26
  27
  28  30  32
  33
  34
  35
  36  38
  39
  40  42  44
		

Crossrefs

Partial sums are a subset of A053767 (partial sums of composite numbers).
Functional neighbors: A005381, A054265, A068780, A373403, A373405, A373411, A373412.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],CompositeQ],#1+1!=#2&]//Most
Showing 1-10 of 44 results. Next