A055112 a(n) = n*(n+1)*(2*n+1).
0, 6, 30, 84, 180, 330, 546, 840, 1224, 1710, 2310, 3036, 3900, 4914, 6090, 7440, 8976, 10710, 12654, 14820, 17220, 19866, 22770, 25944, 29400, 33150, 37206, 41580, 46284, 51330, 56730, 62496, 68640, 75174, 82110, 89460, 97236, 105450
Offset: 0
Examples
. n A001477(n) as triangle with row lengths = 2*n+1 Row sums = a(n) . 0 0 0 . 1 1 2 3 6 . 2 4 5 6 7 8 30 . 3 9 10 11 12 13 14 15 84 . 4 16 17 18 19 20 21 22 23 24 180 . 5 25 26 27 28 29 30 31 32 33 34 35 330 . 6 36 37 38 39 40 41 42 43 44 45 46 47 48 546 . 7 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 840 . - _Reinhard Zumkeller_, Jan 24 2013
References
- Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.5.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. Roy, The discovery of the series formula for π by Leibniz, Gregory and Nilakantha, Mathematics Magazine, 63 (5) 1990, 291-306.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Mathematica
Table[n(n + 1)(2n + 1), {n, 0, 39}] (* Vladimir Joseph Stephan Orlovsky, Nov 21 2010 *) LinearRecurrence[{4,-6,4,-1},{0,6,30,84},50] (* Harvey P. Dale, Oct 02 2024 *)
-
PARI
a(n)=n*(n+1)*(2*n+1);
-
Python
def A055112(n): return n*(n*((n<<1) + 3) + 1) # Chai Wah Wu, Nov 14 2022
Formula
a(n) = n*(n+1)*(2*n+1).
G.f.: 6*x*(1+x)/(1-x)^4. - Bruno Berselli, Mar 31 2012
From Benoit Cloitre, Apr 30 2002: (Start)
a(n) = 6*A000330(n) = A007531(2*n)/4 = 3*A000292(2*n-1)/2 = A005408(n)*A046092(n)/2 = A005408(n)*(A001844(n)-1)/2.
Sum_{n > 0} 1/a(n) = 3 - 4*log(2). (End)
a(n) = Sum_{i = 1..n} A033581(i). - Jonathan Vos Post, Mar 15 2006
a(n) = Sum_{i = 1..2*n + 1} (n^2 + (i-1)). - Charlie Marion, Sep 14 2012
Sum_{n >= 1} (-1)^(n+1)/a(n) = Pi - 3, due to Nilakantha, circa 1500. See Roy p. 304. - Peter Bala, Feb 19 2015
a(n) = A002378(n) * (2n+1). - Bruce J. Nicholson, Aug 31 2017
a(n) = Sum_{k=n^2..(n+1)^2-1} k. - Darío Clavijo, Jan 31 2025
E.g.f.: exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Feb 02 2025
Comments