cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A127324 Fourth 4-dimensional hyper-tetrahedral coordinate; 4-D analog of A056558.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Alternatively, write n = C(i,4)+C(j,3)+C(k,2)+C(l,1) with i>j>k>l>=0; sequence gives k values. Each n >= 0 has a unique representation as n = C(i,4)+C(j,3)+C(k,2)+C(l.1) with i>j>k>l>=0. This is the combinatorial number system of degree t = 4, where we get [A194882, A194883, A194884, A127324].
If {(W,X,Y,Z)} are 4-tuples of nonnegative integers with W>=X>=Y>=Z ordered by W, X, Y and Z, then W=A127321(n), X=A127322(n), Y=A127323(n) and Z=A127324(n). These sequences are the four-dimensional analogs of the three-dimensional A056556, A056557 and A056558.
This is a 'Matryoshka doll' sequence with alpha=0 (cf. A055462 and A000332), seq(seq(seq(seq(i,i=alpha..k),k=alpha..n),n=alpha..m),m=alpha..4). - Peter Luschny, Jul 14 2009

Examples

			See A127321 for a table of A127321, A127322, A127323, A127324
See A127327 for a table of A127324, A127325, A127326, A127327
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a127324 n = a127324_list !! n
    a127324_list = concatMap (concatMap concat .
                   inits . inits . enumFromTo 0) $ enumFrom 0
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    seq(seq(seq(seq(i,i=0..k),k=0..n),n=0..m),m=0..5); # Peter Luschny, Sep 22 2011
  • Mathematica
    Table[i, {m, 0, 5}, {k, 0, m}, {j, 0, k}, {i, 0, j}] // Flatten  (* Robert G. Wilson v, Sep 27 2011 *)

Formula

For W>=X>=Y>=Z>=0, a(A000332(W+3)+A000292(X)+A000217(Y)+Z) = Z A127322(n+1) = A127321(n)==A127324(n) ? 0 : A127322(n)==A127324(n) ? 0 : A127323(n)==A127324(n) ? 0 : A127324(n)+1

A127560 Number of fixed r-celled polyominoes with smallest containing rectangle measuring k by m, read in order r=A056556(n)+1, k=A056560(n)+1, m=A056558(n)+1.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 1, 0, 1, 8, 8, 1, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 1, 12, 25, 12, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 18, 44, 18, 0, 1, 16, 50, 50, 16, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 32, 8, 0, 0, 38, 155, 155, 38, 0, 1, 20, 82, 120, 82, 20, 1
Offset: 0

Views

Author

Graeme McRae, Jan 18 2007

Keywords

Comments

The sum of each triangle, i.e. for a given r the sum of a(n) for all n such that r=A056556(n)+1 is the number of r-celled fixed polyominoes, A001168(r).

Examples

			The 5th triangle of the sequence, the number of fixed pentominoes by dimension, is
0,0,0,0,1
0,0,6,12
0,6,25
0,12
1
This indicates, for example, there are 25 fixed pentominos that fit in a 3 X 3 rectangle and 12 fixed pentominos that fit in a 4 X 2 rectangle.
		

Crossrefs

Cf. A000105, A000988, A001168 Indices for reading by triangles given by A056556, A056560, A056558.

A002262 Triangle read by rows: T(n,k) = k, 0 <= k <= n, in which row n lists the first n+1 nonnegative integers.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 0

Views

Author

Angele Hamel (amh(AT)maths.soton.ac.uk)

Keywords

Comments

The point with coordinates (x = A025581(n), y = A002262(n)) sweeps out the first quadrant by upwards antidiagonals. N. J. A. Sloane, Jul 17 2018
Old name: Integers 0 to n followed by integers 0 to n+1 etc.
a(n) = n - the largest triangular number <= n. - Amarnath Murthy, Dec 25 2001
The PARI functions t1, t2 can be used to read a square array T(n,k) (n >= 0, k >= 0) by antidiagonals downwards: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002
Values x of unique solution pair (x,y) to equation T(x+y) + x = n, where T(k)=A000217(k). - Lekraj Beedassy, Aug 21 2004
a(A000217(n)) = 0; a(A000096(n)) = n. - Reinhard Zumkeller, May 20 2009
Concatenation of the set representation of ordinal numbers, where the n-th ordinal number is represented by the set of all ordinals preceding n, 0 being represented by the empty set. - Daniel Forgues, Apr 27 2011
An integer sequence is nonnegative if and only if it is a subsequence of this sequence. - Charles R Greathouse IV, Sep 21 2011
a(A195678(n)) = A000040(n) and a(m) <> A000040(n) for m < A195678(n), an example of the preceding comment. - Reinhard Zumkeller, Sep 23 2011
A sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. A002262 is reluctant sequence of 0,1,2,3,... The nonnegative integers, A001477. - Boris Putievskiy, Dec 12 2012

Examples

			From _Daniel Forgues_, Apr 27 2011: (Start)
Examples of set-theoretic representation of ordinal numbers:
  0: {}
  1: {0} = {{}}
  2: {0, 1} = {0, {0}} = {{}, {{}}}
  3: {0, 1, 2} = {{}, {0}, {0, 1}} = ... = {{}, {{}}, {{}, {{}}}} (End)
From _Omar E. Pol_, Jul 15 2012: (Start)
  0;
  0, 1;
  0, 1, 2;
  0, 1, 2, 3;
  0, 1, 2, 3, 4;
  0, 1, 2, 3, 4, 5;
  0, 1, 2, 3, 4, 5, 6;
  0, 1, 2, 3, 4, 5, 6, 7;
  0, 1, 2, 3, 4, 5, 6, 7, 8;
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
(End)
		

Crossrefs

As a sequence, essentially same as A048151.
Cf. A060510 (parity).

Programs

  • Haskell
    a002262 n k = a002262_tabl !! n !! k
    a002262_row n = a002262_tabl !! n
    a002262_tabl = map (enumFromTo 0) [0..]
    a002262_list = concat a002262_tabl
    -- Reinhard Zumkeller, Aug 05 2015, Jul 13 2012, Mar 07 2011
    
  • Maple
    seq(seq(i,i=0..n),n=0..14); # Peter Luschny, Sep 22 2011
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
  • Mathematica
    m[n_]:= Floor[(-1 + Sqrt[8n - 7])/2]
    b[n_]:= n - m[n] (m[n] + 1)/2
    Table[m[n], {n, 1, 105}]     (* A003056 *)
    Table[b[n], {n, 1, 105}]     (* A002260 *)
    Table[b[n] - 1, {n, 1, 120}] (* A002262 *)
    (* Clark Kimberling, Jun 14 2011 *)
    Flatten[Table[k, {n, 0, 14}, {k, 0, n}]] (* Alonso del Arte, Sep 21 2011 *)
    Flatten[Table[Range[0,n], {n,0,15}]] (* Harvey P. Dale, Jan 31 2015 *)
  • PARI
    a(n)=n-binomial(round(sqrt(2+2*n)),2)
    
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)),2) /* A002262, this sequence */
    
  • PARI
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)),2)-(n+1) /* A025581, cf. comment by Somos for reading arrays by antidiagonals */
    
  • PARI
    concat(vector(15,n,vector(n,i,i-1)))  \\ M. F. Hasler, Sep 21 2011
    
  • PARI
    apply( {A002262(n)=n-binomial(sqrtint(8*n+8)\/2,2)}, [0..99]) \\ M. F. Hasler, Oct 20 2022
    
  • Python
    for i in range(16):
        for j in range(i):
            print(j, end=", ") # Mohammad Saleh Dinparvar, May 13 2020
    
  • Python
    from math import comb, isqrt
    def a(n): return n - comb((1+isqrt(8+8*n))//2, 2)
    print([a(n) for n in range(105)]) # Michael S. Branicky, May 07 2023

Formula

a(n) = A002260(n) - 1.
a(n) = n - (trinv(n)*(trinv(n)-1))/2; trinv := n -> floor((1+sqrt(1+8*n))/2) (cf. A002024); # gives integral inverses of triangular numbers
a(n) = n - A000217(A003056(n)) = n - A057944(n). - Lekraj Beedassy, Aug 21 2004
a(n) = A140129(A023758(n+2)). - Reinhard Zumkeller, May 14 2008
a(n) = f(n,1) with f(n,m) = if nReinhard Zumkeller, May 20 2009
a(n) = (1/2)*(t - t^2 + 2*n), where t = floor(sqrt(2*n+1) + 1/2) = round(sqrt(2*n+1)). - Ridouane Oudra, Dec 01 2019
a(n) = ceiling((-1 + sqrt(9 + 8*n))/2) * (1 - ((1/2)*ceiling((1 + sqrt(9 + 8*n))/2))) + n. - Ryan Jean, Sep 03 2022
G.f.: x*y/((1 - x)*(1 - x*y)^2). - Stefano Spezia, Feb 21 2024

Extensions

New name from Omar E. Pol, Jul 15 2012
Typo in definition fixed by Reinhard Zumkeller, Aug 05 2015

A014311 Numbers with exactly 3 ones in binary expansion.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 131, 133, 134, 137, 138, 140, 145, 146, 148, 152, 161, 162, 164, 168, 176, 193, 194, 196, 200, 208, 224, 259, 261, 262, 265, 266, 268, 273, 274, 276, 280, 289, 290, 292, 296, 304
Offset: 1

Views

Author

Al Black (gblack(AT)nol.net)

Keywords

Comments

Equivalently, sums of three distinct powers of 2.
Appears to give all n such that 64 is the highest power of 2 dividing A005148(n). - Benoit Cloitre, Jun 22 2002
From Gus Wiseman, Oct 05 2020: (Start)
These are numbers k such that the k-th composition in standard order has length 3. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. The sequence together with the corresponding standard compositions begins:
7: (1,1,1) 44: (2,1,3) 97: (1,5,1)
11: (2,1,1) 49: (1,4,1) 98: (1,4,2)
13: (1,2,1) 50: (1,3,2) 100: (1,3,3)
14: (1,1,2) 52: (1,2,3) 104: (1,2,4)
19: (3,1,1) 56: (1,1,4) 112: (1,1,5)
21: (2,2,1) 67: (5,1,1) 131: (6,1,1)
22: (2,1,2) 69: (4,2,1) 133: (5,2,1)
25: (1,3,1) 70: (4,1,2) 134: (5,1,2)
26: (1,2,2) 73: (3,3,1) 137: (4,3,1)
28: (1,1,3) 74: (3,2,2) 138: (4,2,2)
35: (4,1,1) 76: (3,1,3) 140: (4,1,3)
37: (3,2,1) 81: (2,4,1) 145: (3,4,1)
38: (3,1,2) 82: (2,3,2) 146: (3,3,2)
41: (2,3,1) 84: (2,2,3) 148: (3,2,3)
42: (2,2,2) 88: (2,1,4) 152: (3,1,4)
(End)

Crossrefs

Cf. A038465 (base 3), A038471 (base 4), A038475 (base 5).
Cf. A081091 (primes), A212190 (squares), A212192 (triangular numbers), A173589 (Fibbinary).
Cf. A057168.
Cf. A000079, A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (Hammingweight = 1, 2, ..., 9).
A000217(n-2) counts compositions into three parts.
A001399(n-3) = A069905(n) = A211540(n+2) counts the unordered case.
A001399(n-6) = A069905(n-3) = A211540(n-1) counts the unordered strict case.
A001399(n-6)*6 = A069905(n-3)*6 = A211540(n-1)*6 counts the strict case.
A014612 is an unordered version, with strict case A007304.
A337453 is the strict case.
A337461 counts the coprime case.
A033992 lists numbers divisible by exactly three different primes.
A323024 lists numbers with exactly three different prime multiplicities.

Programs

  • C
    unsigned hakmem175(unsigned x) {
        unsigned s, o, r;
        s = x & -x;  r = x + s;
        o = r ^ x;  o = (o >> 2) / s;
        return r | o;
    }
    unsigned A014311(int n) {
        if (n == 1) return 7;
        return hakmem175(A014311(n - 1));
    }  // Peter Luschny, Jan 01 2014
    
  • Haskell
    a014311 n = a014311_list !! (n-1)
    a014311_list = [2^x + 2^y + 2^z |
                    x <- [2..], y <- [1..x-1], z <- [0..y-1]]
    -- Reinhard Zumkeller, May 03 2012
    
  • Mathematica
    Select[Range[200], (Count[IntegerDigits[#, 2], 1] == 3)&]
    nn = 8; Flatten[Table[2^i + 2^j + 2^k, {i, 2, nn}, {j, 1, i - 1}, {k, 0, j - 1}]] (* T. D. Noe, Nov 05 2013 *)
  • PARI
    for(n=0,10^3,if(hammingweight(n)==3,print1(n,", "))); \\ Joerg Arndt, Mar 04 2014
    
  • PARI
    print1(t=7);for(i=2,50,print1(","t=A057168(t))) \\ M. F. Hasler, Aug 27 2014
    
  • Python
    A014311_list = [2**a+2**b+2**c for a in range(2,6) for b in range(1,a) for c in range(b)] # Chai Wah Wu, Jan 24 2021
    
  • Python
    from itertools import islice
    def A014311_gen(): # generator of terms
        yield (n:=7)
        while True: yield (n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b)
    A014311_list = list(islice(A014311_gen(),20)) # Chai Wah Wu, Mar 10 2025
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A014311(n): return (1<<(r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+(1<Chai Wah Wu, Mar 10 2025

Formula

A000120(a(n)) = 3. - Reinhard Zumkeller, May 03 2012
Start with A084468. If n is in sequence, then 2n is too. - Ralf Stephan, Aug 16 2013
a(n+1) = A057168(a(n)). - M. F. Hasler, Aug 27 2014
a(n) = 2^A056558(n-1) + 2^A194848(n-1) + 2^A194847(n-1). - Ridouane Oudra, Sep 06 2020
Sum_{n>=1} 1/a(n) = A367110 = 1.428591545852638123996854844400537952781688750906133068397189529775365950039... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022

Extensions

Extension and program by Olivier Gérard

A052217 Numbers whose sum of digits is 3.

Original entry on oeis.org

3, 12, 21, 30, 102, 111, 120, 201, 210, 300, 1002, 1011, 1020, 1101, 1110, 1200, 2001, 2010, 2100, 3000, 10002, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000, 20001, 20010, 20100, 21000, 30000, 100002, 100011, 100020, 100101
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2000

Keywords

Comments

From Joshua S.M. Weiner, Oct 19 2012: (Start)
Sequence is a representation of the "energy states" of "multiplex" notation of 3 quantum of objects in a juggling pattern.
0 = an empty site, or empty hand. 1 = one object resides in the site. 2 = two objects reside in the site. 3 = three objects reside in the site. (See A038447.) (End)
A007953(a(n)) = 3; number of repdigits = #{3,111} = A242627(3) = 2. - Reinhard Zumkeller, Jul 17 2014
Can be seen as a table whose n-th row holds the n-digit terms {10^(n-1) + 10^m + 10^k, 0 <= k <= m < n}, n >= 1. Row lengths are then (1, 3, 6, 10, ...) = n*(n+1)/2 = A000217(n). The first and the n last terms of row n are 10^(n-1) + 2 resp. 2*10^(n-1) + 10^k, 0 <= k < n. - M. F. Hasler, Feb 19 2020

Crossrefs

Cf. A007953, A218043 (subsequence).
Row n=3 of A245062.
Other digit sums: A011557 (1), A052216 (2), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Other bases: A014311 (binary), A226636 (ternary), A179243 (Zeckendorf).
Cf. A003056, A002262 (triangular coordinates), A056556, A056557, A056558 (tetrahedral coordinates).

Programs

  • Haskell
    a052217 n = a052217_list !! (n-1)
    a052217_list = filter ((== 3) . a007953) [0..]
    -- Reinhard Zumkeller, Jul 17 2014
    
  • Magma
    [n: n in [1..100101] | &+Intseq(n) eq 3 ]; // Vincenzo Librandi, Mar 07 2013
    
  • Mathematica
    Union[FromDigits/@Select[Flatten[Table[Tuples[Range[0,3],n],{n,6}],1],Total[#]==3&]] (* Harvey P. Dale, Oct 20 2012 *)
    Select[Range[10^6], Total[IntegerDigits[#]] == 3 &] (* Vincenzo Librandi, Mar 07 2013 *)
    Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 18]], {s, IntegerPartitions[3]}]]] (* T. D. Noe, Mar 08 2013 *)
  • PARI
    isok(n) = sumdigits(n) == 3; \\ Michel Marcus, Dec 28 2015
    
  • PARI
    apply( {A052217_row(n,s,t=-1)=vector(n*(n+1)\2,k,t++>s&&t=!s++;10^(n-1)+10^s+10^t)}, [1..5]) \\ M. F. Hasler, Feb 19 2020
    
  • Python
    from itertools import count, islice
    def agen(): yield from (10**i + 10**j + 10**k for i in count(0) for j in range(i+1) for k in range(j+1))
    print(list(islice(agen(), 40))) # Michael S. Branicky, May 14 2022
    
  • Python
    from math import comb, isqrt
    from sympy import integer_nthroot
    def A052217(n): return 10**((m:=integer_nthroot(6*n,3)[0])-(a:=n<=comb(m+2,3)))+10**((k:=isqrt(b:=(c:=n-comb(m-a+2,3))<<1))-((b<<2)<=(k<<2)*(k+1)+1))+10**(c-1-comb(k+(b>k*(k+1)),2)) # Chai Wah Wu, Dec 11 2024

Formula

T(n,k) = 10^(n-1) + 10^A003056(k) + 10^A002262(k) when read as a table with row lengths n*(n+1)/2, n >= 1, 0 <= k < n*(n+1)/2. - M. F. Hasler, Feb 19 2020
a(n) = 10^A056556(n-1) + 10^A056557(n-1) + 10^A056558(n-1). - Kevin Ryde, Apr 17 2021

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Mar 07 2013

A056556 First tetrahedral coordinate; repeat m (m+1)*(m+2)/2 times.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Comments

If {(X,Y,Z)} are triples of nonnegative integers with X >= Y >= Z ordered by X, Y and Z, then X=A056556(n), Y=A056557(n) and Z=A056558(n).
From Gus Wiseman, Jul 03 2019: (Start)
Also the maximum number of distinct multiplicities among integer partitions of n. For example, random partitions of 56 realizing each number of distinct multiplicities are:
1: (24,17,6,5,3,1)
2: (10,9,9,5,5,4,4,3,3,2,1,1)
3: (6,5,5,5,4,4,4,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
4: (28,5,5,3,3,3,2,2,1,1,1,1,1)
5: (13,4,4,4,4,4,3,3,3,2,2,2,2,2,2,1,1)
6: (6,5,5,4,4,4,3,3,3,3,2,2,2,2,2,1,1,1,1,1,1)
The maximum number of distinct multiplicities is 6, so a(56) = 6.
(End)

Examples

			3 is (3+1) * (3+2)/2 = 10 times in the sequence all these occurrences are in consecutive places. The first 3 is at position binomial(3 + 2, 3) = 10, the last one at binomial((3 + 1) + 2, 3) - 1. - _David A. Corneth_, Oct 14 2022
		

Crossrefs

Programs

  • Mathematica
    Table[Table[m, {(m+1)(m+2)/2}], {m, 0, 7}] // Flatten (* Jean-François Alcover, Feb 28 2019 *)
  • PARI
    a(n)=my(t=polrootsreal(x^3+3*x^2+2*x-6*n)); t[#t]\1 \\ Charles R Greathouse IV, Feb 22 2017
    
  • Python
    from math import comb
    from sympy import integer_nthroot
    def A056556(n): return (m:=integer_nthroot(6*(n+1),3)[0])-(nChai Wah Wu, Nov 04 2024

Formula

a(n) = floor(x) where x is the (largest real) solution to x^3 + 3x^2 + 2x - 6n = 0; a(A000292(n)) = n+1.
a(n+1) = a(n)+1 if a(n) = A056558(n), otherwise a(n). - Graeme McRae, Jan 09 2007
a(n) = floor(t/3 + 1/t - 1), where t = (81*n + 3*sqrt(729*n^2 - 3))^(1/3). - Ridouane Oudra, Mar 21 2021
a(n) = floor(t + 1/(3*t) - 1), where t = (6*n)^(1/3), for n>=1. - Ridouane Oudra, Nov 04 2022
a(n) = m if n>=binomial(m+2,3) and a(n) = m-1 otherwise where m = floor((6n+6)^(1/3)). - Chai Wah Wu, Nov 04 2024

Extensions

Incorrect formula deleted by Ridouane Oudra, Nov 04 2022

A056557 Second tetrahedral coordinate.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Comments

If {(X,Y,Z)} are triples of nonnegative integers with X >= Y >= Z ordered by X, Y and Z, then X=A056556(n), Y=A056557(n) and Z=A056558(n).

Crossrefs

Programs

  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1),3)[0])-(nChai Wah Wu, Nov 04 2024

Formula

a(n) = floor((sqrt(8*(n-A056556(n)*(A056556(n)+1)*(A056556(n)+2)/6)+1)-1)/2) = A003056(n-A000292(A056556(n)-1)).
a(n+1) = 0 if A056556(n) = A056558(n); a(n+1) = a(n)+1 if a(n) = A056558(n); otherwise a(n+1) = a(n). - Graeme McRae, Jan 09 2007

A194847 Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives i values.

Original entry on oeis.org

2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2011

Keywords

Comments

Each n >= 0 has a unique representation as n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0. This is the combinatorial number system of degree t = 3, where we get [A194847, A194848, A056558]. For degree t = 2 we get [A002024, A002262] and A138036.

Examples

			The i,j,k coordinates for n equal to 0 through 10 are:
0, [2, 1, 0]
1, [3, 1, 0]
2, [3, 2, 0]
3, [3, 2, 1]
4, [4, 1, 0]
5, [4, 2, 0]
6, [4, 2, 1]
7, [4, 3, 0]
8, [4, 3, 1]
9, [4, 3, 2]
10, [5, 1, 0]
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

The [i,j,k] values are [A194847, A194848, A056558], or equivalently [A056556+2, A056557+1, A056558]. See A194849 for the union list of triples.
Cf. also A002024, A002262, A138036.

Programs

  • Maple
    # Given x and a list a, returns smallest i such that x >= a[i].
    whereinlist:=proc(x,a)  local i:
    if whattype(a) <> list then ERROR(`a not a list`); fi:
    for i from 1 to nops(a) do if x < a[i] then break; fi; od:
    RETURN(i-1); end:
    t3:=[seq(binomial(n,3),n=0..50)];
    t2:=[seq(binomial(n,2),n=0..50)];
    t1:=[seq(binomial(n,1),n=0..50)];
    for n from 0 to 200 do
    i3:=whereinlist(n,t3);
    i2:=whereinlist(n-t3[i3],t2);
    i1:=whereinlist(n-t3[i3]-t2[i2],t1);
    L[n]:=[i3-1,i2-1,i1-1];
    od:
    [seq(L[n][1],n=0..200)];
  • Python
    from math import comb
    from sympy import integer_nthroot
    def A194847(n): return (m:=integer_nthroot(6*(n+1),3)[0])+(n>=comb(m+2,3))+1 # Chai Wah Wu, Nov 05 2024

Formula

Equals A056556(n) + 2.

A194848 Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives j values.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2011

Keywords

Comments

See A194847.

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

The [i,j,k] values are [A194847, A194848, A056558].

Programs

  • Maple
    See A194847.
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A194848(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1),3)[0])-(n(k<<2)*(k+1)+1) # Chai Wah Wu, Nov 04 2024

Formula

Equals A056557(n) + 1.

A056559 Tetrahedron with T(t,n,k) = t - n; succession of growing finite triangles with declining values per row.

Original entry on oeis.org

0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Examples

			First triangle: [0]; second triangle: [1; 0 0]; third triangle: [2; 1 1; 0 0 0]; ...
		

Crossrefs

Together with A056558 and A056560 might enable reading "by antidiagonals" of cube arrays as 3-dimensional analog of A002262 and A025581 with square arrays.
Bisection (y-coordinates) of A332662.

Programs

  • Julia
    function a_list(N)
        a = Int[]
        for n in 1:N
            for j in ((k:-1:1) for k in 1:n)
                t = n - j[1]
                for m in j
                    push!(a, t)
    end end end; a end
    A = a_list(10) # Peter Luschny, Feb 19 2020
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A056559(n): return (m:=integer_nthroot(6*(n+1),3)[0])-(a:=nChai Wah Wu, Dec 11 2024

Formula

a(n) = A056556(n) - A056557(n).
Showing 1-10 of 28 results. Next