cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A336502 Partial sums of A057003.

Original entry on oeis.org

1, 7, 127, 5167, 365527, 39435607, 6006997207, 1226103906007, 322796982334807, 106460296033918807, 42980408446129381207, 20846482682939051365207, 11959807608801430284133207, 8010447502346968140207973207, 6193994326661240674349352805207, 5476021766725276671842502543205207
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2020

Keywords

Comments

Inspired by doubly triangular numbers (A002817).

Examples

			a(2) = 1 + 2*3 = 7.
a(3) = 1 + 2*3 + 4*5*6 = 127.
a(4) = 1 + 2*3 + 4*5*6 + 7*8*9*10 = 5167.
		

Crossrefs

Programs

  • Mathematica
    Accumulate @ Table[(n * (n + 1)/2)!/((n - 1) * n /2)!, {n, 1, 16}] (* Amiram Eldar, Jul 23 2020 *)
  • PARI
    {a(n) = sum(i=1, n, prod(j=(i-1)*i/2+1, i*(i+1)/2, j))}

Formula

a(n) = Sum_{i=1..n} Product_{j=T(i-1)+1..T(i)} j where T(n) is n-th triangular number.
a(n) = A227364(T(n)) where T(n) is n-th triangular number.
a(n) ~ n^(2*n) / 2^n. - Vaclav Kotesovec, Nov 20 2021

A117384 Positive integers, each occurring twice in the sequence, such that a(n) = a(k) when n+k = 4*a(n), starting with a(1)=1 and filling the next vacant position with the smallest unused number.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 5, 3, 6, 7, 4, 8, 5, 9, 6, 10, 11, 7, 12, 8, 13, 9, 14, 10, 15, 16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 29, 22, 30, 23, 31, 24, 32, 25, 33, 26, 34, 27, 35, 28, 36, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42
Offset: 1

Views

Author

Paul D. Hanna, Mar 11 2006

Keywords

Comments

Positions where n occurs are A001614(n) and 4*n-A001614(n), where A001614 is the Connell sequence: 1 odd, 2 even, 3 odd, ...
From Paolo Xausa, Aug 27 2021: (Start)
Terms can be arranged in an irregular triangle T(r,c) read by rows in which row r is a permutation P of the integers in the interval [s, s+rlen-1], where s = 1+(r-1)*(r-2)/2, rlen = 2*r-1 and r >= 1 (see example).
P is the alternating (first term > second term < third term > fourth term ...) permutation m -> 1, 1 -> 2, m+1 -> 3, 2 -> 4, m+2 -> 5, 3 -> 6, ..., rlen -> rlen, where m = ceiling(rlen/2).
The triangle has the following properties.
Row lengths are the positive odd numbers.
First column is A000124.
Terms in column c (where c >= 1) are of the form k*(k+1)/2+ceiling(c/2), for integers k >= floor((c-1)/2), each even column being equal to the column preceding it.
Row records (the positive terms of A000217) are in the right border.
Indices of row records are the positive terms of A000290.
Each row r contains r terms that are duplicated in the next row.
In each row, the sum of terms which are not already listed in the sequence gives the positive terms of A006003.
Row sums give A063488.
For rows r >= 2, row product is A057003(r)*A057003(r-1). (End)

Examples

			9 first appears at position: A001614(9) = 14;
9 next appears at position: 4*9 - A001614(9) = 22.
From _Paolo Xausa_, Aug 27 2021: (Start)
Written as an irregular triangle T(r,c) the sequence begins:
  r\c  1   2   3   4   5   6   7   8   9  10  11  12  13
  1:   1;
  2:   2,  1,  3;
  3:   4,  2,  5,  3,  6;
  4:   7,  4,  8,  5,  9,  6, 10;
  5:  11,  7, 12,  8, 13,  9, 14, 10, 15;
  6:  16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21;
  7:  22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28;
  ...
The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it.
               1
            2  1  3
         4  2  5  3  6
      7  4  8  5  9  6 10
  11  7 12  8 13  9 14 10 15
             ...
(End)
		

Crossrefs

Cf. A117385 (a(5*a(n)-n)=a(n)), A117386 (a(6*a(n)-n)=a(n)).
Cf. A001614 (Connell sequence).

Programs

  • Mathematica
    nterms=64;a=ConstantArray[0,nterms];For[n=1;t=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=t;If[(d=4t-n)<=nterms,a[[d]]=a[[n]]];t++]]; a (* Paolo Xausa, Aug 27 2021 *)
    (* Second program, triangle rows *)
    nrows = 8;Table[rlen=2r-1;Permute[Range[s=1+(r-1)(r-2)/2,s+rlen-1],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}] (* Paolo Xausa, Aug 27 2021 *)
  • PARI
    {a(n)=local(A=vector(n),m=1); for(k=1,n,if(A[k]==0,A[k]=m;if(4*m-k<=#A,A[4*m-k]=m);m+=1));A[n]}
    
  • PARI
    T(r,c) = my(k = r-1-((c+1) % 2)); k*(k+1)/2+ceil(c/2);
    tabf(nn) = {for (r=1, nn, for(c = 1, 2*r-1, print1(T(r,c), ", ");); print;);} \\ Michel Marcus, Sep 09 2021

Formula

a(4*a(n)-n) = a(n).
Lim_{n->infinity} a(n)/n = 1/2.
Lim_{n->infinity} (a(n+1)-a(n))/sqrt(n) = 1.
a( A001614(n) ) = n; a( 4n - A001614(n) ) = n.
T(r,c) = k*(k+1)/2+ceiling(c/2), where k = r-1-((c+1) mod 2), r >= 1 and c >= 1. - Paolo Xausa, Sep 09 2021

A062029 Group even numbers into (2), (4,6), (8,10,12), (14,16,18,20), ...; a(n) = product of n-th group.

Original entry on oeis.org

2, 24, 960, 80640, 11531520, 2500485120, 763847884800, 312344808652800, 164644289755545600, 108684799028822016000, 87805845811395506995200, 85211145316323008446464000, 97803969545162680178835456000, 131047222390590123375392194560000, 202702319752278628965061257854976000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = 8*10*12 = 960.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n*Gamma[(2+n+n^2)/2]/Gamma[(2-n+n^2)/2], {n,30}] (* G. C. Greubel, May 05 2022 *)
    With[{nn=30},Times@@@TakeList[Range[2,(nn(nn+1))/2,2],Range[nn/2]]] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n) = { 2^n*((n^2 + n)/2)!/((n^2 - n)/2)! } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [2^n*gamma((2+n+n^2)/2)/gamma((2-n+n^2)/2) for n in (1..30)] # G. C. Greubel, May 05 2022

Formula

a(n) = Product_{k=1..n} (n^2 - n + 2*k) = (n^2 + n)!!/(n^2 - n)!! .
a(n) = 2^n*Gamma((n^2 + n + 2)/2)/Gamma((n^2 - n + 2)/2).
a(n) = 2^n * A057003(n-1).

Extensions

Formula and more terms from Vladeta Jovovic, Jun 05 2001

A093451 Number of distinct prime divisors of Product_{k=1+(n-1)n/2..n(n+1)/2} k (i.e., of 1, 2*3, 4*5*6, 7*8*9*10, ...).

Original entry on oeis.org

0, 2, 3, 4, 6, 6, 7, 8, 10, 10, 11, 13, 13, 14, 16, 15, 18, 17, 20, 19, 22, 21, 22, 24, 24, 26, 26, 27, 30, 28, 30, 31, 32, 33, 33, 36, 35, 36, 38, 39, 39, 39, 43, 41, 43, 44, 44, 47, 45, 49, 48, 48, 52, 49, 53, 53, 54, 54, 55, 58, 55, 60, 59, 59, 62, 60, 65, 64, 64, 65, 66, 68
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2004

Keywords

Examples

			a(7) = 7 as the prime divisors of the product 22*23*24*25*26*27*28 are 2,3,5,7,11,13 and 23.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->nops(factorset(product(k,k=1+n*(n-1)/2..n*(n+1)/2))): seq(a(n),n=1..80); # Emeric Deutsch, Feb 05 2006
  • Mathematica
    With[{nn=75},PrimeNu[#]&/@Times@@@TakeList[Range[(nn(nn+1))/2],Range[ nn]]] (* Harvey P. Dale, Sep 01 2021 *)
  • PARI
    a(n) = { my(b=binomial(n,2)+1, bp1=binomial(n+1,2), res = primepi(n)); forprime(p = n + 1, bp1, bp = b%p; if(bp > bp1 % p || bp == 0, res++ ) ); res } \\ David A. Corneth, Sep 01 2021

Formula

a(n) = A001221(A057003(n)). - Michel Marcus, Jul 29 2017

Extensions

Corrected and extended by Emeric Deutsch, Feb 05 2006

A093456 Product of composite numbers among next n numbers.

Original entry on oeis.org

1, 1, 24, 720, 2520, 120960, 259459200, 1357171200, 4929724800, 42608389824000, 11912739135897600, 59907396092544000, 20458385028297216000, 7926428532945162240000, 4693751193479184764928000, 328774885640356760904499200000, 12797917159224592605450240000
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2004

Keywords

Comments

Conjecture: There are finitely many numbers such that a(n) is not == 0 (mod a(n-1)). (Also mentioned in A093455.)
Product of all composite numbers between n*(n-1)/2+1 and n*(n+1)/2 (including boundaries). - Stefan Steinerberger, Apr 02 2006

Examples

			Sequence begins:
   1:             a(1) = 1.
   2  3:          a(2) = 1.
   4  5  6:       a(3) = 4*6 = 24.
   7  8  9 10:    a(4) = 8*9*10 = 720.
  11 12 13 14 15: a(5) = 12*14*15 = 2520.
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[a := Range[n*(n - 1)/2 + 1, n*(n + 1)/2]; b := Select[a, Not[PrimeQ[ # ]] &]; Product[b[[i]], {i, 1, Length[b]}], {n, 1, 20}] (* Stefan Steinerberger, Apr 02 2006 *)
    Module[{nn=20},Times@@Select[#,CompositeQ]&/@TakeList[Range[(nn(nn+1))/2],Range[nn]]] (* Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = A057003(n)/A093457(n). - Michel Marcus, Jan 14 2025

Extensions

More terms from Stefan Steinerberger, Apr 02 2006

A062079 Group the odd numbers as (1), (3,5), (7,9,11), (13,15,17,19), (21,23,25,27,29), ... then a(n) = LCM of the n-th group.

Original entry on oeis.org

1, 15, 693, 62985, 3151575, 706110405, 44166438855, 30637289555145, 3274769391079725, 312250034062131165, 593968671422526274875, 5531265959247033940935, 95840860214492177176316925
Offset: 1

Views

Author

Amarnath Murthy, Jun 15 2001

Keywords

Examples

			a(3) = lcm(7,9,11) = 693.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM[Gamma[2*Binomial[n+1, 2] + 1]*Gamma[Binomial[n, 2] + 1]/(2^n*Gamma[Binomial[n+1, 2] + 1]*Gamma[2*Binomial[n, 2] + 1])], {n,20}] (* G. C. Greubel, May 13 2022 *)
  • PARI
    a(n) = local(r);r=1;forstep(k=n^2-n+1,n^2+n-1,2,r=lcm(r,k));r \\ Franklin T. Adams-Watters, Jul 03 2009
    
  • PARI
    { for (n=1, 100, a=b=n^2 - n + 1; for (k=1, n - 1, a=lcm(a, b + 2*k)); write("b062079.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 31 2009
    
  • SageMath
    [lcm(gamma(2*binomial(n+1, 2) + 1)*gamma(binomial(n, 2) + 1)/(2^n*gamma(binomial(n+1, 2) + 1)*gamma(2*binomial(n, 2) + 1))) for n in (1..20)] # G. C. Greubel, May 13 2022

Formula

a(n) = lcm(Gamma(2*binomial(n+1, 2) + 1)*Gamma(binomial(n, 2) + 1)/(2^n*Gamma(binomial(n+1, 2) + 1)*Gamma(2*binomial(n, 2) + 1))). - G. C. Greubel, May 13 2022

Extensions

Corrected and extended by Franklin T. Adams-Watters, Jul 03 2009

A071226 n-th power of the product of next n natural numbers.

Original entry on oeis.org

1, 36, 1728000, 645241282560000, 6076911214672415134617600000, 3556852067865008593425339325122707718144000000, 269512166306728282203388439200933086924875888324090265600000000000000
Offset: 1

Views

Author

Amarnath Murthy, May 17 2002

Keywords

Crossrefs

Cf. A057003.

Programs

  • Maple
    seq(product(n*(n-1)/2+i,i=1..n)^n,n=1..7);
  • Mathematica
    Table[Pochhammer[1 + (n-1)*n/2, n]^n, {n, 1, 8}] (* Vaclav Kotesovec, Jul 13 2021 *)
    With[{nn=10},(Times@@#)^Length[#]&/@TakeList[Range[(nn(nn+1))/2],Range[ nn]]] (* Harvey P. Dale, Aug 09 2021 *)

Formula

a(n) ~ exp(5/6) * n^(2*n^2) / 2^(n^2). - Vaclav Kotesovec, Jul 13 2021

Extensions

More terms from Sascha Kurz, Jan 02 2003

A093908 Let f(k, n) be the product of n consecutive numbers beginning with k. Then a(n) is the least k > 1+n*(n-1)/2 such that f(k, n) is a multiple of f(1+n*(n-1)/2, n).

Original entry on oeis.org

2, 3, 8, 39, 52, 187, 204, 863, 773, 6621, 34038, 2404, 34440, 223097, 11976, 1106290, 1980047, 85119892, 15308072, 496820597, 2590416388, 1087065675, 4736428784, 1128909067, 242793786666, 2791304683100, 273924845940
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2004

Keywords

Comments

f(k, n) = A008279(n+k-1, n). 1+n*(n-1)/2 = A000124(n-1). f(1+n*(n-1)/2, n) = A057003(n).
a(28) > 88*10^12.

Examples

			a(4) = 39 because 39*40*41*42 is divisible by 7*8*9*10. No
smaller set gives a product that is a multiple of 7*8*9*10.
		

Crossrefs

Extensions

Edited and extended by David Wasserman, Apr 25 2007

A072529 Product of the next n multiples of n.

Original entry on oeis.org

1, 24, 3240, 1290240, 1126125000, 1822853652480, 4914543582748800, 20469829379869900800, 124583146969045247683200, 1061374990515840000000000000, 12232437772393129356474535526400
Offset: 1

Views

Author

Amarnath Murthy, Aug 01 2002

Keywords

Examples

			a(4) = 10*4 * 9*4 * 8*4 * 7*4 = 1290240.
		

Crossrefs

a(n) = A057003(n) * n^n.

Programs

  • PARI
    a(n) = n^n * (n*(n+1)/2)! / (n*(n-1)/2)!; \\ Michel Marcus, Apr 16 2025

Formula

a(n) = n^n * (n*(n+1)/2)! / (n*(n-1)/2)!. - Lior Manor, Aug 19 2002

Extensions

More terms from Lior Manor Aug 19 2002

A092934 a(n) = floor((product of next n even numbers) / (product of first n odd numbers)).

Original entry on oeis.org

2, 8, 64, 768, 12202, 240546, 5652480, 154090259, 4777917500, 165999652648, 6386199899437, 269455867248640, 12371082837260281, 613924958232961934, 32745240915899894988, 1868019304186661949347, 113491057175295931012181
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2004

Keywords

Programs

  • Mathematica
    Table[Floor[2^n(n (n + 1)/2)!/(((n - 1) n/2)!*(2n - 1)!!)], {n, 1, 20}] (* Stefan Steinerberger, Jan 28 2006 *)

Formula

a(n) = floor(2^n*A057003(n)/A001147(n)).

Extensions

More terms from Stefan Steinerberger, Jan 28 2006
Showing 1-10 of 11 results. Next