Original entry on oeis.org
1, 7, 127, 5167, 365527, 39435607, 6006997207, 1226103906007, 322796982334807, 106460296033918807, 42980408446129381207, 20846482682939051365207, 11959807608801430284133207, 8010447502346968140207973207, 6193994326661240674349352805207, 5476021766725276671842502543205207
Offset: 1
a(2) = 1 + 2*3 = 7.
a(3) = 1 + 2*3 + 4*5*6 = 127.
a(4) = 1 + 2*3 + 4*5*6 + 7*8*9*10 = 5167.
-
Accumulate @ Table[(n * (n + 1)/2)!/((n - 1) * n /2)!, {n, 1, 16}] (* Amiram Eldar, Jul 23 2020 *)
-
{a(n) = sum(i=1, n, prod(j=(i-1)*i/2+1, i*(i+1)/2, j))}
A117384
Positive integers, each occurring twice in the sequence, such that a(n) = a(k) when n+k = 4*a(n), starting with a(1)=1 and filling the next vacant position with the smallest unused number.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 5, 3, 6, 7, 4, 8, 5, 9, 6, 10, 11, 7, 12, 8, 13, 9, 14, 10, 15, 16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 29, 22, 30, 23, 31, 24, 32, 25, 33, 26, 34, 27, 35, 28, 36, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42
Offset: 1
9 first appears at position: A001614(9) = 14;
9 next appears at position: 4*9 - A001614(9) = 22.
From _Paolo Xausa_, Aug 27 2021: (Start)
Written as an irregular triangle T(r,c) the sequence begins:
r\c 1 2 3 4 5 6 7 8 9 10 11 12 13
1: 1;
2: 2, 1, 3;
3: 4, 2, 5, 3, 6;
4: 7, 4, 8, 5, 9, 6, 10;
5: 11, 7, 12, 8, 13, 9, 14, 10, 15;
6: 16, 11, 17, 12, 18, 13, 19, 14, 20, 15, 21;
7: 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28;
...
The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it.
1
2 1 3
4 2 5 3 6
7 4 8 5 9 6 10
11 7 12 8 13 9 14 10 15
...
(End)
-
nterms=64;a=ConstantArray[0,nterms];For[n=1;t=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=t;If[(d=4t-n)<=nterms,a[[d]]=a[[n]]];t++]]; a (* Paolo Xausa, Aug 27 2021 *)
(* Second program, triangle rows *)
nrows = 8;Table[rlen=2r-1;Permute[Range[s=1+(r-1)(r-2)/2,s+rlen-1],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}] (* Paolo Xausa, Aug 27 2021 *)
-
{a(n)=local(A=vector(n),m=1); for(k=1,n,if(A[k]==0,A[k]=m;if(4*m-k<=#A,A[4*m-k]=m);m+=1));A[n]}
-
T(r,c) = my(k = r-1-((c+1) % 2)); k*(k+1)/2+ceil(c/2);
tabf(nn) = {for (r=1, nn, for(c = 1, 2*r-1, print1(T(r,c), ", ");); print;);} \\ Michel Marcus, Sep 09 2021
A062029
Group even numbers into (2), (4,6), (8,10,12), (14,16,18,20), ...; a(n) = product of n-th group.
Original entry on oeis.org
2, 24, 960, 80640, 11531520, 2500485120, 763847884800, 312344808652800, 164644289755545600, 108684799028822016000, 87805845811395506995200, 85211145316323008446464000, 97803969545162680178835456000, 131047222390590123375392194560000, 202702319752278628965061257854976000
Offset: 1
-
Table[2^n*Gamma[(2+n+n^2)/2]/Gamma[(2-n+n^2)/2], {n,30}] (* G. C. Greubel, May 05 2022 *)
With[{nn=30},Times@@@TakeList[Range[2,(nn(nn+1))/2,2],Range[nn/2]]] (* Harvey P. Dale, May 09 2022 *)
-
a(n) = { 2^n*((n^2 + n)/2)!/((n^2 - n)/2)! } \\ Harry J. Smith, Jul 30 2009
-
[2^n*gamma((2+n+n^2)/2)/gamma((2-n+n^2)/2) for n in (1..30)] # G. C. Greubel, May 05 2022
A093451
Number of distinct prime divisors of Product_{k=1+(n-1)n/2..n(n+1)/2} k (i.e., of 1, 2*3, 4*5*6, 7*8*9*10, ...).
Original entry on oeis.org
0, 2, 3, 4, 6, 6, 7, 8, 10, 10, 11, 13, 13, 14, 16, 15, 18, 17, 20, 19, 22, 21, 22, 24, 24, 26, 26, 27, 30, 28, 30, 31, 32, 33, 33, 36, 35, 36, 38, 39, 39, 39, 43, 41, 43, 44, 44, 47, 45, 49, 48, 48, 52, 49, 53, 53, 54, 54, 55, 58, 55, 60, 59, 59, 62, 60, 65, 64, 64, 65, 66, 68
Offset: 1
a(7) = 7 as the prime divisors of the product 22*23*24*25*26*27*28 are 2,3,5,7,11,13 and 23.
-
with(numtheory): a:=n->nops(factorset(product(k,k=1+n*(n-1)/2..n*(n+1)/2))): seq(a(n),n=1..80); # Emeric Deutsch, Feb 05 2006
-
With[{nn=75},PrimeNu[#]&/@Times@@@TakeList[Range[(nn(nn+1))/2],Range[ nn]]] (* Harvey P. Dale, Sep 01 2021 *)
-
a(n) = { my(b=binomial(n,2)+1, bp1=binomial(n+1,2), res = primepi(n)); forprime(p = n + 1, bp1, bp = b%p; if(bp > bp1 % p || bp == 0, res++ ) ); res } \\ David A. Corneth, Sep 01 2021
A093456
Product of composite numbers among next n numbers.
Original entry on oeis.org
1, 1, 24, 720, 2520, 120960, 259459200, 1357171200, 4929724800, 42608389824000, 11912739135897600, 59907396092544000, 20458385028297216000, 7926428532945162240000, 4693751193479184764928000, 328774885640356760904499200000, 12797917159224592605450240000
Offset: 1
Sequence begins:
1: a(1) = 1.
2 3: a(2) = 1.
4 5 6: a(3) = 4*6 = 24.
7 8 9 10: a(4) = 8*9*10 = 720.
11 12 13 14 15: a(5) = 12*14*15 = 2520.
...
-
Table[a := Range[n*(n - 1)/2 + 1, n*(n + 1)/2]; b := Select[a, Not[PrimeQ[ # ]] &]; Product[b[[i]], {i, 1, Length[b]}], {n, 1, 20}] (* Stefan Steinerberger, Apr 02 2006 *)
Module[{nn=20},Times@@Select[#,CompositeQ]&/@TakeList[Range[(nn(nn+1))/2],Range[nn]]] (* Harvey P. Dale, Dec 30 2024 *)
A062079
Group the odd numbers as (1), (3,5), (7,9,11), (13,15,17,19), (21,23,25,27,29), ... then a(n) = LCM of the n-th group.
Original entry on oeis.org
1, 15, 693, 62985, 3151575, 706110405, 44166438855, 30637289555145, 3274769391079725, 312250034062131165, 593968671422526274875, 5531265959247033940935, 95840860214492177176316925
Offset: 1
a(3) = lcm(7,9,11) = 693.
-
Table[LCM[Gamma[2*Binomial[n+1, 2] + 1]*Gamma[Binomial[n, 2] + 1]/(2^n*Gamma[Binomial[n+1, 2] + 1]*Gamma[2*Binomial[n, 2] + 1])], {n,20}] (* G. C. Greubel, May 13 2022 *)
-
a(n) = local(r);r=1;forstep(k=n^2-n+1,n^2+n-1,2,r=lcm(r,k));r \\ Franklin T. Adams-Watters, Jul 03 2009
-
{ for (n=1, 100, a=b=n^2 - n + 1; for (k=1, n - 1, a=lcm(a, b + 2*k)); write("b062079.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 31 2009
-
[lcm(gamma(2*binomial(n+1, 2) + 1)*gamma(binomial(n, 2) + 1)/(2^n*gamma(binomial(n+1, 2) + 1)*gamma(2*binomial(n, 2) + 1))) for n in (1..20)] # G. C. Greubel, May 13 2022
A071226
n-th power of the product of next n natural numbers.
Original entry on oeis.org
1, 36, 1728000, 645241282560000, 6076911214672415134617600000, 3556852067865008593425339325122707718144000000, 269512166306728282203388439200933086924875888324090265600000000000000
Offset: 1
-
seq(product(n*(n-1)/2+i,i=1..n)^n,n=1..7);
-
Table[Pochhammer[1 + (n-1)*n/2, n]^n, {n, 1, 8}] (* Vaclav Kotesovec, Jul 13 2021 *)
With[{nn=10},(Times@@#)^Length[#]&/@TakeList[Range[(nn(nn+1))/2],Range[ nn]]] (* Harvey P. Dale, Aug 09 2021 *)
A093908
Let f(k, n) be the product of n consecutive numbers beginning with k. Then a(n) is the least k > 1+n*(n-1)/2 such that f(k, n) is a multiple of f(1+n*(n-1)/2, n).
Original entry on oeis.org
2, 3, 8, 39, 52, 187, 204, 863, 773, 6621, 34038, 2404, 34440, 223097, 11976, 1106290, 1980047, 85119892, 15308072, 496820597, 2590416388, 1087065675, 4736428784, 1128909067, 242793786666, 2791304683100, 273924845940
Offset: 1
a(4) = 39 because 39*40*41*42 is divisible by 7*8*9*10. No
smaller set gives a product that is a multiple of 7*8*9*10.
A072529
Product of the next n multiples of n.
Original entry on oeis.org
1, 24, 3240, 1290240, 1126125000, 1822853652480, 4914543582748800, 20469829379869900800, 124583146969045247683200, 1061374990515840000000000000, 12232437772393129356474535526400
Offset: 1
a(4) = 10*4 * 9*4 * 8*4 * 7*4 = 1290240.
A092934
a(n) = floor((product of next n even numbers) / (product of first n odd numbers)).
Original entry on oeis.org
2, 8, 64, 768, 12202, 240546, 5652480, 154090259, 4777917500, 165999652648, 6386199899437, 269455867248640, 12371082837260281, 613924958232961934, 32745240915899894988, 1868019304186661949347, 113491057175295931012181
Offset: 1
-
Table[Floor[2^n(n (n + 1)/2)!/(((n - 1) n/2)!*(2n - 1)!!)], {n, 1, 20}] (* Stefan Steinerberger, Jan 28 2006 *)
Showing 1-10 of 11 results.
Comments