A039661 Decimal expansion of exp(Pi).
2, 3, 1, 4, 0, 6, 9, 2, 6, 3, 2, 7, 7, 9, 2, 6, 9, 0, 0, 5, 7, 2, 9, 0, 8, 6, 3, 6, 7, 9, 4, 8, 5, 4, 7, 3, 8, 0, 2, 6, 6, 1, 0, 6, 2, 4, 2, 6, 0, 0, 2, 1, 1, 9, 9, 3, 4, 4, 5, 0, 4, 6, 4, 0, 9, 5, 2, 4, 3, 4, 2, 3, 5, 0, 6, 9, 0, 4, 5, 2, 7, 8, 3, 5, 1, 6, 9, 7, 1, 9, 9, 7, 0, 6, 7, 5, 4, 9, 2
Offset: 2
A064107 Continued fraction quotients for e^e = 15.15426224... (A073226).
15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3
Offset: 0
Comments
It was conjectured (but remains unproved) that this sequence is infinite and aperiodic, but it is difficult to determine who first posed this problem. - Vladimir Reshetnikov, Apr 27 2013
Examples
15.154262241479264189760430... = 15 + 1/(6 + 1/(2 + 1/(13 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 30 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..19999
- Eric Weisstein's World of Mathematics, Transcendental Number.
- Wikipedia, List of unsolved problems in mathematics, Analysis.
- Wikipedia, Irrational number, Open questions.
Programs
-
Maple
with(numtheory): cfrac(evalf((exp(1))^(exp(1)),2560),256,'quotients');
-
Mathematica
ContinuedFraction[E^E,100] (* Harvey P. Dale, Sep 29 2012 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(exp(1))); for (n=1, 20000, write("b064107.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009
Extensions
Offset changed by Andrew Howroyd, Aug 05 2024
A320428 Continued fraction expansion of exp(Pi/4).
2, 5, 5, 1, 3, 25, 1, 1, 17, 1, 3, 3, 1, 12, 1, 8, 5, 3, 1, 46, 3, 4, 12, 1, 5, 22, 3, 2, 1, 7, 4, 2, 1, 13, 13, 8, 1, 1, 3, 1, 1, 1, 2, 1, 11, 1, 5, 2, 1, 4, 7, 1, 71, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 6, 1, 9, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 2, 1, 2, 10, 1, 19, 2, 2, 4, 1
Offset: 0
Comments
This value arises naturally by taking the ratio of the volume of a unit 2n-dimensional ball to the volume of the 2n-dimensional cube containing it (with side length 2) and summing over all n.
Links
- Greg Egan, Puzzle in which this value arises naturally
- Grant Sanderson and Brady Haran, Darts in Higher Dimensions, Numberphile video (2019)
Programs
-
Mathematica
ContinuedFraction[Exp[Pi/4], 100]
-
PARI
contfrac(exp(Pi/4)) \\ Felix Fröhlich, Aug 28 2019
A116907 Continued fraction expansion for e^(-e) = 0.0659880358453125370767901875.
0, 15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3, 39
Offset: 1
Comments
e^(-e) = (1/e)^e = 1/(e^e) = (reciprocal of A073226). e^(-e) = 0.0659880358453125370767901875... = 0 + 1/15+ 1/6+ 1/2+ 1/13+ 1/1+ 1/3+ 1/6+ 1/2+ ... See also: A073230 Decimal expansion of (1/e)^e. See also: A064107 Continued fraction quotients for e^e = 15.15426223. See also: A058287 Continued fraction for e^Pi. See also: A058288 Continued fraction expansion of Pi^e.
Comments
Examples
References
Links
Crossrefs
Programs
Mathematica
PARI
PARI
Formula