A058331 a(n) = 2*n^2 + 1.
1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579, 649, 723, 801, 883, 969, 1059, 1153, 1251, 1353, 1459, 1569, 1683, 1801, 1923, 2049, 2179, 2313, 2451, 2593, 2739, 2889, 3043, 3201, 3363, 3529, 3699, 3873, 4051
Offset: 0
Examples
a(1) = 3 since (0 0 / 0 0), (1 0 / 0 1) and (0 1 / 1 0) have different determinants. G.f. = 1 + 3*x + 9*x^2 + 19*x^3 + 33*x^4 + 51*x^5 + 73*x^6 + ... - _Michael Somos_, Oct 19 2022
References
- Ivan Niven, Numbers: Rational and Irrational, New York: Random House for Yale University (1961): 17.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Leo Tavares, Illustration: Triangular Outlines
- Reinhard Zumkeller, Enumerations of Divisors.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000124.
Second row of array A099597.
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A112295.
Cf. A005408, A016813, A086514, A000125, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A161710, A080856, A161711, A161712, A161713, A161715, A006261.
Cf. A001079, A037270, A071253, A108741, A132592, A146311, A146312, A146313, A173115, A173116, A173121.
Column 2 of array A188645.
Programs
-
Haskell
a058331 = (+ 1) . a001105 -- Reinhard Zumkeller, Dec 13 2014
-
Magma
[2*n^2 + 1 : n in [0..100]]; // Wesley Ivan Hurt, Feb 02 2017
-
Mathematica
b[g_] := Length[Union[Map[Det, Flatten[ Table[{{i, j}, {k, l}}, {i, 0, g}, {j, 0, g}, {k, 0, g}, {l, 0, g}], 3]]]] Table[b[g], {g, 0, 20}] 2*Range[0, 49]^2 + 1 (* Alonso del Arte, Dec 05 2012 *)
-
PARI
a(n)=2*n^2+1 \\ Charles R Greathouse IV, Jun 16 2011
Formula
G.f.: (1 + 3x^2)/(1 - x)^3. - Paul Barry, Apr 06 2003
a(n) = M^n * [1 1 1], leftmost term, where M = the 3 X 3 matrix [1 1 1 / 0 1 4 / 0 0 1]. a(0) = 1, a(1) = 3; a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). E.g., a(4) = 33 since M^4 *[1 1 1] = [33 17 1]. - Gary W. Adamson, Nov 11 2004
a(n) = cosh(2*arccosh(n)). - Artur Jasinski, Feb 10 2010
a(n) = 4*n + a(n-1) - 2 for n > 0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(n) = (((n-1)^2 + n^2))/2 + (n^2 + (n+1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = A251599(3*n) for n > 0. - Reinhard Zumkeller, Dec 13 2014
E.g.f.: (2*x^2 + 2*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(2))*coth(Pi/sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(2))*csch(Pi/sqrt(2)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(2))*sinh(Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(2))*csch(Pi/sqrt(2)). (End)
From Leo Tavares, May 23 2022: (Start)
a(n) = A000384(n+1) - 3*n.
a(n) = a(-n) for all n in Z and A037235(n) = Sum_{k=0..n-1} a(k). - Michael Somos, Oct 19 2022
Extensions
Revised description from Noam Katz (noamkj(AT)hotmail.com), Jan 28 2001
Comments