cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A053176 Primes p such that 2p+1 is composite.

Original entry on oeis.org

7, 13, 17, 19, 31, 37, 43, 47, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 109, 127, 137, 139, 149, 151, 157, 163, 167, 181, 193, 197, 199, 211, 223, 227, 229, 241, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337, 347, 349, 353, 367, 373, 379, 383
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Comments

Primes not in A005384 = non-Sophie Germain primes.
Also, numbers n such that odd part of A005277(n) is prime. Proof by John Renze, Sep 30 2004
Sequence gives primes p such that B(2p) has denominator 6, where B(2n) are the Bernoulli numbers. - Benoit Cloitre, Feb 06 2002
Sequence gives all n such that the equation phi(x)=2n has no solution. - Benoit Cloitre, Apr 07 2002
A010051(a(n))*(1-A156660(a(n))) = 1; subsequence of A138887. - Reinhard Zumkeller, Feb 18 2009
Mersenne prime exponents > 3 must be in the union of this sequence and (A002144). - Roderick MacPhee, Jan 12 2017

Examples

			17 is a term because 2*17 + 1 = 35 is composite.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(12200) | not IsPrime(2*p+1)]; // Vincenzo Librandi, Jun 18 2015
  • Mathematica
    Select[Prime[Range[1000]], ! PrimeQ[2 # + 1] &] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    list(lim)=select(p->!isprime(2*p+1),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Feb 20 2012

A059452 Safe primes (A005385) that are not Sophie Germain primes.

Original entry on oeis.org

7, 47, 59, 107, 167, 227, 263, 347, 383, 467, 479, 503, 563, 587, 839, 863, 887, 983, 1187, 1283, 1307, 1319, 1367, 1487, 1523, 1619, 1823, 1907, 2027, 2099, 2207, 2447, 2579, 2879, 2999, 3119, 3167, 3203, 3467, 3947, 4007, 4079, 4127, 4139, 4259, 4283
Offset: 1

Views

Author

Labos Elemer, Feb 02 2001

Keywords

Comments

Except for 7, these primes are congruent to 11 modulo 12.
Terminal primes in complete Cunningham chains of first kind, i.e., the chains cannot be continued from these primes.

Examples

			347 is a term because 173 is a prime but 695 is not.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)/2],If[ !PrimeQ[2*p+1],AppendTo[lst,p]]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 24 2009 *)
  • PARI
    is(p) = p > 2 && isprime(p) && isprime((p-1)/2) && !isprime(2*p+1); \\ Amiram Eldar, Jul 15 2024
  • Python
    from itertools import count, islice
    from sympy import isprime, prime
    def A059452_gen(): # generator of terms
        return filter(lambda p:isprime(p>>1) and not isprime(p<<1|1),(prime(i) for i in count(1)))
    A059452_list = list(islice(A059452_gen(),10)) # Chai Wah Wu, Jul 12 2022
    

Formula

A156659(a(n))*(1-A156660(a(n))) = 1. - Reinhard Zumkeller, Feb 18 2009

Extensions

Broken link updated by R. J. Mathar, Apr 12 2010

A059762 Initial primes of Cunningham chains of first type with length exactly 3. Primes in A059453 that survive as primes just two "2p+1 iterations", forming chains of exactly 3 terms.

Original entry on oeis.org

41, 1031, 1451, 1481, 1511, 1811, 1889, 1901, 1931, 3449, 3491, 3821, 3911, 5081, 5441, 5849, 6101, 6131, 7151, 7349, 7901, 8969, 9221, 10691, 10709, 11171, 11471, 11801, 12101, 12821, 12959, 13229, 14009, 14249, 14321, 14669, 14741, 15161
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Primes p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7} = {composite, prime, prime, prime, composite}.

Examples

			41 is a term because 20 and 325 are composites, and 41, 83, and 167 are primes.
		

Crossrefs

Programs

  • Mathematica
    ipccQ[n_]:=Module[{c=(n-1)/2},PrimeQ[NestList[2#+1&,c,4]]=={False, True, True, True, False}]; Select[Prime[Range[2000]],ipccQ] (* Harvey P. Dale, Nov 10 2014 *)

Extensions

Definition corrected by Alexandre Wajnberg, Aug 31 2005
Offset corrected by Amiram Eldar, Jul 15 2024

A059761 Initial primes of Cunningham chains of first type with length exactly 2. Primes in A059453 that survive as primes only one "2p-1 iteration", forming chains of exactly 2 terms.

Original entry on oeis.org

3, 29, 53, 113, 131, 173, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 743, 761, 809, 911, 953, 1013, 1049, 1103, 1223, 1289, 1499, 1559, 1583, 1601, 1733, 1973, 2003, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2543
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Primes p such that {(p-1)/2, p, 2p+1, 4p+3} = {composite, prime, prime, composite}.

Examples

			53 is a term because 26 and 215 are composites, and 53 and 107 are primes.
		

Crossrefs

Programs

  • Mathematica
    ccftQ[p_]:=Boole[PrimeQ[{(p-1)/2,p,2 p+1,4 p+3}]]=={0,1,1,0}; Select[ Prime[ Range[400]],ccftQ] (* Harvey P. Dale, Jun 19 2021 *)

A059453 Sophie Germain primes (A005384) that are not safe primes (A005385).

Original entry on oeis.org

2, 3, 29, 41, 53, 89, 113, 131, 173, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 743, 761, 809, 911, 953, 1013, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901
Offset: 1

Views

Author

Labos Elemer, Feb 02 2001

Keywords

Comments

Except for 2 and 3 these primes are congruent to 5 or 11 modulo 12.
Introducing terms of Cunningham chains of first kind.

Examples

			89 is a term because (89-1)/2 = 44 is not prime, but 2*89 + 1 = 179 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[(p-1)/2],If[PrimeQ[2*p+1],AppendTo[lst,p]]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 24 2009 *)
    Select[Prime[Range[300]],PrimeQ[2#+1]&&!PrimeQ[(#-1)/2]&] (* Harvey P. Dale, Nov 10 2017 *)
  • PARI
    is(p) = isprime(p) && isprime(2*p+1) && if(p > 2, !isprime((p-1)/2), 1); \\ Amiram Eldar, Jul 15 2024
  • Python
    from itertools import count, islice
    from sympy import isprime, prime
    def A059453_gen(): # generator of terms
        return filter(lambda p:not isprime(p>>1) and isprime(p<<1|1),(prime(i) for i in count(1)))
    A059453_list = list(islice(A059453_gen(),10)) # Chai Wah Wu, Jul 12 2022
    

Formula

A156660(a(n))*(1-A156659(a(n))) = 1. - Reinhard Zumkeller, Feb 18 2009

A059766 Initial (unsafe) primes of Cunningham chains of first type with length exactly 6.

Original entry on oeis.org

89, 63419, 127139, 405269, 810809, 1069199, 1178609, 1333889, 1598699, 1806089, 1958249, 2606069, 2848949, 3241289, 3339989, 3784199, 3962039, 4088879, 4444829, 4664249, 4894889, 4897709, 5132999, 5215499, 5238179, 6026309, 6059519, 6088529, 6490769, 6676259
Offset: 1

Views

Author

Labos Elemer, Feb 21 2001

Keywords

Comments

Special terms of A059453. Not identical to A023330 of which 1122659, 2164229, 2329469, ..., etc. are omitted since they have exact length 7 or larger.
Unsafe primes starting complete chains of length 6.

Examples

			89 is a term because (89-1)/2 = 44 and 64*89+63 = 5759 = 13*443 are composites, while 89, 179, 359, 719, 1439, and 2879 are primes.
1122659 is not a term because it initiates a chain of length 7.
4658939 is not a term because (4658939-1)/2 = 2329469 is prime. - _Sean A. Irvine_, Oct 09 2022
		

Crossrefs

Extensions

Entry revised by N. J. A. Sloane Apr 01 2006
a(12) onward corrected and extended by Sean A. Irvine, Oct 09 2022

A059767 Initial (unsafe) primes of Cunningham chains of first type with length exactly 7.

Original entry on oeis.org

1122659, 2164229, 2329469, 10257809, 10309889, 12314699, 14030309, 14145539, 23103659, 24176129, 28843649, 37088729, 42389519, 49160099, 50785439, 62800169, 68718059, 88174049, 95831189, 105388169, 121255889, 138140729, 155439419, 159938459, 173285999
Offset: 1

Views

Author

Labos Elemer, Feb 21 2001

Keywords

Comments

Special primes from A059453.
Primes p such that (2^k)*p+(2^k)-1 is also prime for k = 0, 1, 2, 3, 4, 5, 6 and is composite for k = -1 and k = 7.

Examples

			C7 prime chain is generated from prime a(10) = 24176129 with 2p+1 iterations: 24176129, 48352259, 96704519, 193409039, 386818079, 773636159, 1547272319, 3094544639.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 178 (Rev. ed. 1997).

Crossrefs

Programs

  • Mathematica
    Transpose[Select[{#, Length[NestWhileList[2#+1&, #, PrimeQ]]-1}&/@ Prime[Range[PrimePi[24177000]]], #[[2]]>6&]][[1]]
    Select[Prime[Range[10^6]], PrimeQ[a1=2*#+1]&&PrimeQ[a2=2*a1+1]&&PrimeQ[a3=2*a2+1]&&PrimeQ[a4=2*a3+1]&&PrimeQ[a5=2*a4+1]&&PrimeQ[a6=2*a5+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
  • PARI
    is(n)=n%30==29 && isprime(n) && isprime(2*n+1) && isprime(4*n+3) && isprime(8*n+7) && isprime(16*n+15) && isprime(32*n+31) && isprime(64*n+63) && !isprime(n\2) && !isprime(128*n+127) \\ Charles R Greathouse IV, Dec 01 2016

Extensions

Corrected and extended by Harvey P. Dale, Jul 10 2002
More terms from Vladimir Joseph Stephan Orlovsky, Jan 17 2009
Corrected by John Cerkan, Nov 30 2016

A059326 Numbers k such that 2*3^k + 7 is prime.

Original entry on oeis.org

1, 3, 9, 11, 15, 17, 24, 41, 68, 72, 641, 716, 1139, 1200, 1661, 3339, 5181, 68769
Offset: 1

Views

Author

Robert G. Wilson v, Feb 15 2001

Keywords

Comments

a(18) > 26240. - Jinyuan Wang, Jan 20 2020
a(19) > 100000. - Michael S. Branicky, Jul 08 2024

Crossrefs

Cf. A059454 (2*3^k - 7 is prime).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2*3^n+7)]; // Jinyuan Wang, Jan 20 2020
  • Mathematica
    Do[ If[ PrimeQ[ 2*3^n + 7 ], Print[n] ], {n, 0, 10000} ]
  • PARI
    is(n)=ispseudoprime(2*3^n+7) \\ Charles R Greathouse IV, Jun 13 2017
    

Extensions

a(18) from Michael S. Branicky, Jul 07 2024
Showing 1-8 of 8 results.