A064753 a(n) = n*7^n - 1.
6, 97, 1028, 9603, 84034, 705893, 5764800, 46118407, 363182462, 2824752489, 21750594172, 166095446411, 1259557135290, 9495123019885, 71213422649144, 531726889113615, 3954718737782518, 29311444762388081, 216579008522089716, 1595845325952240019, 11729463145748964146
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- Index entries for linear recurrences with constant coefficients, signature (15,-63,49).
Crossrefs
Programs
-
Magma
[ n*7^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
Maple
k:= 7; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Mathematica
Table[n 7^n-1,{n,20}] (* or *) LinearRecurrence[{15,-63,49},{6,97,1028},20] (* Harvey P. Dale, Feb 12 2022 *)
Formula
From Alois P. Heinz, Feb 19 2021: (Start)
G.f.: (56*x^2-21*x+1)/((x-1)*(7*x-1)^2).
a(n) = A036293(n) - 1. (End)
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(7*x*exp(6*x) - 1).
a(n) = 15*a(n-1) - 63*a(n-2) + 49*a(n-3) for n > 3. (End)
Comments