A060544 Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.
1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ignacio Larrosa Cañestro, Hexágono y estrella determinados por tres pares de cevianas simétricas, (java applet).
- Al Cugo et al., Marion's theorem, The Mathematics Teacher 86 (1993) p. 619.
- John Elias, Illustration of Initial Terms
- F. Pollock, On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders, Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
- Eric Weisstein's World of Mathematics, Alkane Graph
- Eric Weisstein's World of Mathematics, Graph Path
- Eric Weisstein's World of Mathematics, Marion's Theorem
- Eric Weisstein's World of Mathematics, Wiener Sum Index
- Index entries for two-way infinite sequences
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
-
Magma
[(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
-
Maple
H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
-
Mathematica
Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *) LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *) FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *) Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *) Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *) Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
-
PARI
a(n)=(3*n-1)*(3*n-2)/2
-
Sage
[(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019
Formula
a(n) = C(3*n, 3)/n = (3*n-1)*(3*n-2)/2 = A001504(n-1)/2.
a(1-n) = a(n).
From Paul Barry, Mar 15 2003: (Start)
a(n) = C(n-1, 0) + 9*C(n-1, 1) + 9*C(n-1, 2); binomial transform of (1, 9, 9, 0, 0, 0, ...).
a(n) = 9*A000217(n-1) + 1.
G.f.: x*(1 + 7*x + x^2)/(1-x)^3. (End)
Narayana transform (A001263) of [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n-1) = Pochhammer(4,3*n)/(Pochhammer(2,n)*Pochhammer(n+1,2*n)).
a(n-1) = 1/Hypergeometric([-3*n,3*n+3,1],[3/2,2],3/4). - Peter Luschny, Jan 09 2012
From Ant King, Jun 18 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 9.
Sum_{n>=1} 1/a(n) = 2*Pi/(3*sqrt(3)) = A248897.
(End)
a(n) = (2*n-1)^2 + (n-1)*n/2. - Ivan N. Ianakiev, Nov 18 2015
a(n) = A101321(9,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 9*x^2)*exp(x)/2 - 1. - G. C. Greubel, Mar 02 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 11*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/(2*e) - 1. (End)
a(n) = P(2*n,4)*P(3*n,3)/24 for n>=2, where P(s,k) = ((s - 2)*k^2 - (s - 4)*k)/2 is the k-th s-gonal number. - Lechoslaw Ratajczak, Jul 18 2021
Extensions
Additional description from Terrel Trotter, Jr., Apr 06 2002
Formulas by Paul Berry corrected for offset 1 by Wolfdieter Lang, Jan 30 2015
Comments