A060789 a(n) = n / (gcd(n,2) * gcd(n,3)).
1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 11, 2, 13, 7, 5, 8, 17, 3, 19, 10, 7, 11, 23, 4, 25, 13, 9, 14, 29, 5, 31, 16, 11, 17, 35, 6, 37, 19, 13, 20, 41, 7, 43, 22, 15, 23, 47, 8, 49, 25, 17, 26, 53, 9, 55, 28, 19, 29, 59, 10, 61, 31, 21, 32, 65, 11, 67, 34, 23, 35, 71, 12, 73, 37, 25, 38, 77
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
- Wikipedia, Quasi-polynomial
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
Crossrefs
Programs
-
GAP
List([1..80],n->n/(Gcd(n,2)*Gcd(n,3))); # Muniru A Asiru, Feb 20 2019
-
Magma
[n/(Gcd(n,2)*Gcd(n,3)) : n in [1..100]]; // Wesley Ivan Hurt, Aug 06 2015
-
Magma
I:=[1,1,1,2,5,1,7,4,3,5,11,2]; [n le 12 select I[n] else 2*Self(n-6)-Self(n-12): n in [1..80]]; // Vincenzo Librandi, Aug 07 2015
-
Maple
a := proc(n): if n = 1 then 1 else denom((4*n-6)/n) fi: end: seq(a(n), n=1..77); # Johannes W. Meijer, Dec 19 2012
-
Mathematica
Numerator[Table[(-1)^(n+1) Det[ DiagonalMatrix[ Table[ 2/(i(i+1)) - 1, {i, 1, n-2} ] ] + 1 ], {n, 30} ]] (* Alexander Adamchuk, May 19 2006 *) Table[Numerator[(n+3)/(n+2)/(n+1)/n],{n,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *) Table[n/(GCD[n, 2] GCD[n, 3]), {n, 100}] (* Wesley Ivan Hurt, Aug 06 2015 *) LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1}, {1,1,1,2,5,1,7,4,3,5,11,2}, 80] (* Vincenzo Librandi, Aug 07 2015 *)
-
PARI
a(n) = { n / (gcd(n, 2) * gcd(n, 3)) } \\ Harry J. Smith, Jul 11 2009
-
Sage
[lcm(n,6)/6 for n in range(1, 78)] # Zerinvary Lajos, Jun 07 2009
Formula
G.f.: x*(1 + x + x^2 + 2*x^3 + 5*x^4 + x^5 + 5*x^6 + 2*x^7 + x^8 + x^9 + x^10)/(1 - x^6)^2.
Multiplicative with a(2^e)=2^(e-1), a(3^e)=3^(e-1), a(p^e)=p^e, p>3. - Vladeta Jovovic, Sep 09 2004
a(n) = Numerator[(-1)^(n+1)*Det[DiagonalMatrix[Table[2/(i(i+1))-1, {i,1,n-2}]]+1]], n>2. - Alexander Adamchuk, May 19 2006
a(n) divides n. a(6k) = k for integer k>0. a(p^k) = p^k for prime p>3 and integer k>0. - Alexander Adamchuk, Sep 20 2006
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109047(n)/6.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-2/3^s+2/6^s). (End)
a(n) = denominator((4*n-6)/n), n >= 2, with a(1) = 1. - Johannes W. Meijer, Dec 19 2012
a(n) = 2*a(n-6) - a(n-12) for n >= 12. - Robert Israel, Aug 06 2015
a(n) = gcd((n-1)*n*(n+1)/6, n). - Lechoslaw Ratajczak, Feb 16 2017
From Peter Bala, Feb 13 2019: (Start)
a(n) = n/gcd(n,n + 6) = n/gcd(n,6).
a(n) = n/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6.
a(n) is a quasi-polynomial in n: a(6*n+1) = 6*n + 1; a(6*n+2) = 3*n + 1; a(6*n+3) = 2*n + 1; a(6*n+4) = 3*n + 2; a(6*n+5) = 6*n + 5; a(6*n) = n.
a(n) = numerator(n/(n + 6)); a(n) = denominator((n + 6)/n).
(End)
Sum_{k=1..n} a(k) ~ 7*n^2/24. - Vaclav Kotesovec, Aug 09 2022
From Ctibor O. Zizka, Oct 04 2023: (Start)
For k >=0, a(k) = gcd(k + 1, k*(k + 1), k*(k + 1)*(2*k + 1)/6).
If (k mod 6) = 0 or 4 then a(k) = (k + 1).
If (k mod 6) = 1 or 3 then a(k) = (k + 1)/2.
If (k mod 6) = 2 then a(k) = (k + 1)/3.
If (k mod 6) = 5 then a(k) = (k + 1)/6. (End)
Comments