Original entry on oeis.org
1, 64, 18, 256, 50, 576, 49, 1024, 81, 1600, 242, 2304, 338, 3136, 225, 4096, 289, 5184, 722, 6400, 882, 7744, 529, 9216, 625, 10816, 1458, 12544, 1682, 14400, 961, 16384, 1089, 18496, 2450, 20736, 2738, 23104, 1521, 25600, 1681, 28224, 3698, 30976, 4050, 33856
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (0, 3, 0, -6, 0, 10, 0, -12, 0, 12, 0, -10, 0, 6, 0, -3, 0, 1).
Index in formula corrected, extended by
R. J. Mathar, Nov 14 2008
A261327
a(n) = (n^2 + 4) / 4^((n + 1) mod 2).
Original entry on oeis.org
1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Diogo Queiros-Condé, Jean Chaline, and Jacques Dubois, Le monde des fractales La Nature trans-échelles, 478p., ellipses, Paris, 2015, page 220.
- T. A. Witten, Jr. and L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenom, Phys. Rev. Lett., Vol. 47 (Nov 09 1981), pp. 1400-1403.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Cf.
A000007,
A000290,
A001622,
A002522,
A005563,
A010685,
A010698,
A013946,
A014176,
A057427,
A061035-
A061050,
A078370,
A087475,
A090771,
A098316,
A098317,
A098318,
A144433,
A168077,
A171621,
A176398,
A176439,
A176458,
A176522,
A176537,
A195161.
-
[Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
-
A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
-
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
-
vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
-
Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
-
a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
-
[(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
-
[numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
A171522
Denominator of 1/n^2-1/(n+2)^2.
Original entry on oeis.org
0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-10,0,10,0,-5,0,1).
-
A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
-
a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
-
concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014
A165441
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.
Original entry on oeis.org
1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
Offset: 1
.1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
.4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
.9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
-
T:= (k,n)-> denom(1/min (n,k)^2 -1/max (n, k)^2):
seq(seq(T(k, d-k), k=1..d-1), d=2..12);
-
T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)
A017114
a(n) = (8*n + 4)^2.
Original entry on oeis.org
16, 144, 400, 784, 1296, 1936, 2704, 3600, 4624, 5776, 7056, 8464, 10000, 11664, 13456, 15376, 17424, 19600, 21904, 24336, 26896, 29584, 32400, 35344, 38416, 41616, 44944, 48400, 51984, 55696, 59536, 63504, 67600, 71824, 76176, 80656, 85264, 90000, 94864, 99856
Offset: 0
-
[(8*n+4)^2: n in [0..35] ]; // Vincenzo Librandi, Jul 21 2011
-
LinearRecurrence[{3, -3, 1},{16, 144, 400},30] (* Ray Chandler, Aug 04 2015 *)
(8*Range[0,40]+4)^2 (* Harvey P. Dale, Aug 13 2024 *)
-
a(n)=(8*n+4)^2 \\ Charles R Greathouse IV, Jun 17 2017
A165727
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2 with T(0,n) = T(k,0) = 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 4, 4, 0, 0, 9, 1, 9, 0, 0, 16, 36, 36, 16, 0, 0, 25, 16, 1, 16, 25, 0, 0, 36, 100, 144, 144, 100, 36, 0, 0, 49, 9, 225, 1, 225, 9, 49, 0, 0, 64, 196, 12, 400, 400, 12, 196, 64, 0, 0, 81, 64, 441, 144, 1, 144, 441, 64, 81, 0, 0, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 0
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000004
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
0, 4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
0, 9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
0, 16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
0, 25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
0, 36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
0, 49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
0, 64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
0, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
Cf.
A165441 (top row and left column removed)
-
T:= (k,n)-> `if` (n=0 or k=0, 0, denom (1/min (n,k)^2 -1/max (n, k)^2)):
seq (seq (T (k, d-k), k=0..d), d=0..11);
A174683
Denominator of 1/16 - 1/n^2.
Original entry on oeis.org
0, 16, 16, 144, 16, 400, 144, 784, 64, 1296, 400, 1936, 18, 2704, 784, 3600, 256, 4624, 1296, 5776, 50, 7056, 1936, 8464, 576, 10000, 2704, 11664, 49, 13456, 3600, 15376, 1024, 17424, 4624, 19600, 81, 21904, 5776, 24336, 1600, 26896, 7056, 29584, 242, 32400, 8464, 35344, 2304, 38416
Offset: 0
-
Table[If[n == 0, 0, If[n == 4, 16, Denominator[(n^2 - 16)/(4*n)^2]]], {n, 0, 100}] (* G. C. Greubel, Sep 16 2018 *)
Table[Which[n==0,0,n==4,16,True,Denominator[(n^2-16)/(16n^2)]],{n,0,100}] (* Harvey P. Dale, Dec 13 2024 *)
-
for(n=0,100, print1(if(n==0,0, if(n==4,16, denominator((n^2 - 16)/(4*n)^2))), ", ")) \\ G. C. Greubel, Sep 16 2018
Removed a(-4)-a(-1) since a(-n)=a(n) by
G. C. Greubel, Sep 16 2018
A152018
Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).
Original entry on oeis.org
9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1).
Cf.
A143025 with a similar principle of construction.
Stratified definition, corrected indices, extended,
R. J. Mathar, Dec 10 2008
A174381
Triangle for denominators of half extended Rydberg-Ritz spectrum of the hydrogenic spectra. a(n) is an antidiagonal writing of array in A171522 without first column.
Original entry on oeis.org
0, 0, 4, 0, 9, 36, 0, 16, 16, 144, 0, 25, 100, 225, 400, 0, 36, 9, 12, 144, 900, 0, 49, 196, 441, 784, 1225, 1764, 0, 64, 64, 576, 64, 1600, 576, 3136, 0, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 0, 100, 25, 900, 400, 100, 225, 4900, 1600, 8100, 0, 121, 484, 1089
Offset: 0
A222740
Denominators of 1/16 - 1/(4 + 8*n)^2.
Original entry on oeis.org
1, 18, 50, 49, 81, 242, 338, 225, 289, 722, 882, 529, 625, 1458, 1682, 961, 1089, 2450, 2738, 1521, 1681, 3698, 4050, 2209, 2401, 5202, 5618, 3025, 3249, 6962, 7442, 3969, 4225, 8978, 9522, 5041, 5329, 11250, 11858, 6241
Offset: 0
a(0) = 1*1, a(1) = 2*9 = 18, a(2) = 2*25 = 50, a(3) = 1*49 = 49.
a(0) = 16*0 + 1 = 1, a(1) = 16*1 + 2 = 18, a(2) = 16*3 + 2 = 50, a(3) = 16*3 + 1 = 49.
-
Table[1/16-1/(4+8n)^2,{n,0,40}]//Denominator (* or *) LinearRecurrence[ {3,-6,10,-12,12,-10,6,-3,1},{1,18,50,49,81,242,338,225,289},40] (* Harvey P. Dale, Aug 30 2021 *)
Showing 1-10 of 10 results.
Comments