cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063896 a(n) = 2^Fibonacci(n) - 1.

Original entry on oeis.org

0, 1, 1, 3, 7, 31, 255, 8191, 2097151, 17179869183, 36028797018963967, 618970019642690137449562111, 22300745198530623141535718272648361505980415
Offset: 0

Views

Author

Robert G. Wilson v, Aug 29 2001

Keywords

Comments

The recurrence can also be written a(n)+1 = (a(n-1)+1)*(a(n-2)+1) or log_p(a(n)+1) = log_p(a(n-1)+1) + log_p(a(n-2)+1), respectively. Setting a(1)=p-1 for any natural p>1, it follows that log_p(a(n)+1)=Fibonacci(n). Hence any other sequence p^Fibonacci(n)-1 could also serve as a valid solution to that recurrence, depending only on the value of the term a(1). - Hieronymus Fischer, Jun 27 2007
Written in binary, a(n) contains Fibonacci(n) 1's. Thus the sequence converted to base-2 is A007088(a(n)) = 0, 1, 1, 11, 111, 11111, 11111111, ... . - Hieronymus Fischer, Jun 27 2007
In general, if b(n) is defined recursively by b(0) = p, b(1) = q, b(n) = b(n-1)*b(n-2) + b(n-1) + b(n-2) for n >= 2 then b(n) = p^Fibonacci(n-1) * q^Fibonacci(n) - 1. - Rahul Goswami, Apr 15 2020
a(n) is also the numerator of the continued fraction [2^F(0), 2^F(1), 2^F(2), 2^F(3), ..., 2^F(n-2)] for n>0. For the denominator, see A005203. - Chinmay Dandekar and Greg Dresden, Sep 19 2020

Crossrefs

Cf. A000045 (Fibonacci), A000225, A000301, A005203, A061107.
See A131293 for a base-10 analog with Fib(n) 1's.

Programs

  • Maple
    a:= n-> 2^(<<0|1>, <1|1>>^n)[1,2]-1:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 12 2017
  • Mathematica
    2^Fibonacci[Range[0,15]]-1 (* Harvey P. Dale, May 20 2014 *)
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == (a[n - 1] + 1)*(a[n - 2] + 1) - 1}, a[n], {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n) = 2^fibonacci(n) - 1 \\ Charles R Greathouse IV, Oct 03 2016

Formula

The solution to the recurrence a(0) = 0; a(1) = 1; a(n) = a(n-1)*a(n-2) + a(n-1) + a(n-2).
a(n) = A000301(n) - 1. - R. J. Mathar, Apr 26 2007
a(n) = a(n-2)*2^ceiling(log_2(a(n-1))) + a(n-1) for n>1. - Hieronymus Fischer, Jun 27 2007
a(n) = A000225(A000045(n)). - Alois P. Heinz, Mar 19 2020

A144287 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) = Fibonacci rabbit sequence number n coded in base k.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 22, 5, 1, 5, 17, 93, 181, 8, 1, 6, 26, 276, 2521, 5814, 13, 1, 7, 37, 655, 17681, 612696, 1488565, 21, 1, 8, 50, 1338, 81901, 18105620, 4019900977, 12194330294, 34, 1, 9, 65, 2457, 289045, 255941280, 1186569930001, 6409020585966267, 25573364166211253, 55
Offset: 1

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,  ...
  1,   2,    3,     4,     5,  ...
  2,   5,   10,    17,    26,  ...
  3,  22,   93,   276,   655,  ...
  5, 181, 2521, 17681, 81901,  ...
		

Crossrefs

Rows n=1-3 give: A000012, A001477, A002522.
Main diagonal gives A144288.

Programs

  • Maple
    f:= proc(n,b) option remember; `if`(n<2, [n,n], [f(n-1, b)[1]*
           b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]])
        end:
    A:= (n,k)-> f(n,k)[1]:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..11);
  • Mathematica
    f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; t[n_, k_] := f[n, k][[1]]; Flatten[ Table[t[n, 1+d-n], {d, 1, 11}, {n, 1, d}]] (* Jean-François Alcover, translated from Maple, Dec 09 2011 *)

Formula

See program.

A131293 Concatenate a(n-2) and a(n-1) to get a(n); start with a(0)=0, a(1)=1, delete the leading zero. Also: concatenate Fibonacci(n) 1's.

Original entry on oeis.org

0, 1, 1, 11, 111, 11111, 11111111, 1111111111111, 111111111111111111111, 1111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111
Offset: 0

Views

Author

Hieronymus Fischer, Jun 26 2007

Keywords

Comments

Interpreted as base-2 numbers the result is A063896.
This sequence differs from A108047 by the leading a(0) = 0. - Jason Kimberley, Dec 15 2012

Examples

			a(3)=11, a(4)=111, so a(5) = a(4)*a(3) = 11111.
		

Crossrefs

Programs

  • Haskell
    import Data.Function (on)
    a131293 n = a131293_list !! n
    a131293_list = 0 : 1 : map read
                   (zipWith ((++) `on` show) a131293_list $ tail a131293_list)
    -- Reinhard Zumkeller, Oct 05 2015
  • Magma
    [(10^Fibonacci(n)-1)/9: n in [0..10]]; // Vincenzo Librandi, Aug 29 2011
    
  • Maple
    a:= n-> parse(cat(0, 1$combinat[fibonacci](n))):
    seq(a(n), n=0..11);  # Alois P. Heinz, Apr 17 2020
  • Mathematica
    Join[{0},FromDigits/@(PadLeft[{},#,1]&/@Fibonacci[Range[10]])] (* Harvey P. Dale, Aug 28 2011 *)

Formula

a(n) = a(n-2)*10^ceiling(log_10(a(n-1))) + a(n-1) for n > 1.
a(n) = (10^Fibonacci(n) - 1)/9.

A144288 Fibonacci rabbit sequence number n coded in base n, also diagonal of A144287.

Original entry on oeis.org

1, 2, 10, 276, 81901, 2247615258, 81658169024988865, 644986443956439734064225751112, 3427833941153173630835645403655873661712817810325122
Offset: 1

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n, b) option remember; `if`(n<2, [n, n], [f(n-1, b)[1] *b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]]) end: a:= n-> f(n, n)[1]: seq(a(n), n=1..11);
  • Mathematica
    f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; a[n_] := f[n, n][[1]]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Jan 03 2013, translated from Maple *)

Formula

See program.

A248425 Number of "squares" (repeated identical blocks) in the n-th Fibonacci word.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 11, 26, 57, 118, 235, 454, 857, 1588, 2899, 5228, 9333, 16520, 29031, 50702, 88077, 152290, 262239, 449930, 769461, 1312104, 2231591, 3786456, 6410857, 10832908, 18272195, 30769154, 51733857, 86859598, 145642579, 243907918, 408005393, 681773980, 1138094971, 1898045252, 3162632157, 5265345680
Offset: 1

Views

Author

Jeffrey Shallit, Oct 06 2014

Keywords

Comments

Here the Fibonacci words are given by X_0 = 0, X_1 = 1, and X_n = X_{n-1} X_{n-2} where juxtaposition means concatenation.

Examples

			The 5th Fibonacci word is 10110101, which has the following four squares: 11 starting at position 3, 1010 at position 4, 0101 at position 5, and 101101 at position 1.
		

Crossrefs

Programs

  • Magma
    A248425:= func< n | n le 3 select 0 else (2/5)*(2*(n-6)*Fibonacci(n) - (n-5)*Fibonacci(n-1)) + n >;
    [A248425(n): n in [1..50]]; // G. C. Greubel, Oct 02 2024
    
  • Mathematica
    A248425[n_]:= 2*(2*(n-6)*Fibonacci[n] -(n-5)*Fibonacci[n-1])/5 +n +3*Boole[n ==1] + Boole[n==3];
    Table[A248425[n], {n,50}] (* G. C. Greubel, Oct 02 2024 *)
  • SageMath
    def A248425(n): return (2/5)*(2*(n-6)*fibonacci(n) - (n-5)*fibonacci(n-1)) + n + 3*int(n==1) + int(n==3)
    [A248425(n) for n in range(1,51)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = (4/5)*(n-1)*F(n) - (2/5)*(n+5)*F(n-1) - 4*F(n-2) + n, for n >= 4, where F(n) = Fibonacci(n).
G.f.: x^5*(1-x^2+x^4)/((1-x)*(1-x-x^2))^2. - Colin Barker, Oct 07 2014
E.g.f.: 2*exp(x/2)*(5*(5 + 2*x)*cosh(sqrt(5)*x/2) - 29*sqrt(5)*sinh(sqrt(5)*x/2))/25 + x^3/6 + (3 + exp(x))*x - 2. - Stefano Spezia, May 23 2025

A334025 a(0)=0, a(1)=1; and a(n) = {2*a(n-2), 2*a(n-1)}, where {x,y} is the concatenation of x and y.

Original entry on oeis.org

0, 1, 2, 24, 448, 48896, 89697792, 97792179395584, 179395584195584358791168, 195584358791168358791168391168717582336, 358791168391168717582336391168717582336717582336782337435164672
Offset: 0

Views

Author

Jamie Robert Creasey, Apr 14 2020

Keywords

Comments

This sequence, due to the process of concatenating one number with another, bears similarities to A131293 and other familiar sequences. However, unlike A131293, this sequence increases at a faster rate. It happens due to the multiplier applied to the existing terms, which increases the number of digits present in the successive term drastically (see a(7) and a(8)). a(11) is too large to include here and has 102 digits.

Examples

			a(2) = {2*a(2-2), 2*a(2-1)} = {2*0, 2*1} = 02 = 2.
a(5) = {2*a(5-2), 2*a(5-1)} = {2*24, 2*448} = 48896.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = FromDigits @ Join[IntegerDigits[2*a[n - 2]], IntegerDigits[2*a[n - 1]]]; Array[a, 11, 0] (* Amiram Eldar, Apr 18 2020 *)

A339713 a(n) = (a(n-2) concatenate a(n-1)) for n > 2, with a(1)=1, a(2)=10.

Original entry on oeis.org

1, 10, 110, 10110, 11010110, 1011011010110, 110101101011011010110, 1011011010110110101101011011010110, 1101011010110110101101011011010110110101101011011010110, 10110110101101101011010110110101101101011010110110101101011011010110110101101011011010110
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 24 2021

Keywords

Comments

Number of digits in a(n) = A000045(n+1). - Michael S. Branicky, Apr 24 2021
a(n) and a(n+1) contain Fibonacci(n) 1's and Fibonacci(n) 0's respectively.

Crossrefs

Cf. A000045, A111061 (in decimal), A061107, A131293.

Programs

  • Python
    def aupton(terms):
      alst = [1, 10]
      for n in range(3, terms+1): alst.append(int(str(alst[-2])+str(alst[-1])))
      return alst[:terms]
    print(aupton(10)) # Michael S. Branicky, Apr 24 2021
Showing 1-7 of 7 results.