A007778
a(n) = n^(n+1).
Original entry on oeis.org
0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 67.
Cf.
A000169,
A000272,
A000312,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791,
A135608.
-
[n^(n+1):n in [0..20]]; // Vincenzo Librandi, Jan 03 2012
-
seq( n^(n+1), n=0..20); # G. C. Greubel, Mar 05 2020
-
Table[n^(n+1), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Oct 01 2008 *)
-
A007778[n]:=n^(n+1)$
makelist(A007778[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
vector(21, n, my(m=n-1); m^(m+1)) \\ G. C. Greubel, Mar 05 2020
-
[n^(n+1) for n in (0..20)] # G. C. Greubel, Mar 05 2020
A143857
a(n) = n + (n+1)*(n+2)^(n+3).
Original entry on oeis.org
8, 163, 3074, 62503, 1399684, 34588811, 939524102, 27894275215, 900000000008, 31384283767219, 1176925259169802, 47248516628391479, 2022385242251558924, 91957716979980468763, 4427218577690292387854, 225009351233083599856159
Offset: 0
a(1) = 1+(1+1)*(1+2)^(1+3) = 1+2*3^4 = 163.
-
List([0..20], n-> n + (n+1)*(n+2)^(n+3)); # G. C. Greubel, Nov 09 2019
-
[n+(n+1)*(n+2)^(n+3): n in [0..20]]; // Vincenzo Librandi, Dec 27 2010
-
A143857:=n->n+(n+1)*(n+2)^(n+3); seq(A143857(n), n=0..20); # Wesley Ivan Hurt, Mar 20 2014
-
Table[n + (n+1)*(n+2)^(n+3), {n, 0, 20}] (* Vincenzo Librandi, Mar 20 2014 *)
-
vector(21, n, (n-1) + n*(n+1)^(n+2)) \\ G. C. Greubel, Nov 09 2019
-
[n + (n+1)*(n+2)^(n+3) for n in (0..20)] # G. C. Greubel, Nov 09 2019
A061302
a(n) = n! * [x^n] W(-x)*(W(-x) + 2)/(W(-x) + 1), where W denotes Lambert's W function.
Original entry on oeis.org
0, 2, 6, 36, 320, 3750, 54432, 941192, 18874368, 430467210, 11000000000, 311249095212, 9659108818944, 326173191714734, 11905721598812160, 467086816406250000, 19599665578316398592, 875901453762003632658
Offset: 0
Gero Burghardt (gerogoestohollywood(AT)yahoo.de), Jun 05 2001
2*x + 6*x^2 +36*x^3 + 320*x^4 + 3750*x^5 + 54432*x^6 + 941192*x^7 + ...
- Stephan Wolfram, The Mathematica Book, 4th Edition, Cambridge University Press, section 3.2.10 'Special Functions', page 772, 1999.
-
W := LambertW: egf := -W(-x)*(W(-x) + 2)/(W(-x) + 1):
ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Feb 10 2023
-
Range[18]!CoefficientList[ Series[ -ProductLog[ -x], {x, 0, 17}], x] (* Robert G. Wilson v, Mar 23 2005 *)
a[ n_] := If[ n < 0, 0, (n + 1)! SeriesCoefficient[ -ProductLog[-x], {x, 0, n}]] (* Michael Somos, Jun 07 2012 *)
A344744
a(n) is the n-th power of the concatenation of the integers from 0 through n-1.
Original entry on oeis.org
0, 1, 1728, 228886641, 2861381721051424, 3539537889086624823140625, 437104634676747795452235896466702336, 5396563761318393964062660689603780554533710504641, 6662458388479360230805308787387369820914640828074410829911019008
Offset: 1
a(1) = 0^1 = 0;
a(2) = 01^2 = 1;
a(3) = 012^3 = 1728;
a(4) = 0123^4 = 228886641.
-
a[n_] := FromDigits[Join @@ IntegerDigits @ Range[0, n - 1]]^n; Array[a, 9] (* Amiram Eldar, May 29 2021 *)
-
def a(n): return int("".join(str(i) for i in range(n)))**n
print([a(n) for n in range(1, 10)]) # Michael S. Branicky, May 29 2021
Showing 1-4 of 4 results.
Comments