cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A126420 a(n) = n^3 - n - 1.

Original entry on oeis.org

-1, 5, 23, 59, 119, 209, 335, 503, 719, 989, 1319, 1715, 2183, 2729, 3359, 4079, 4895, 5813, 6839, 7979, 9239, 10625, 12143, 13799, 15599, 17549, 19655, 21923, 24359, 26969, 29759, 32735, 35903, 39269, 42839, 46619, 50615, 54833, 59279, 63959, 68879, 74045, 79463
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

Given three consecutive numbers x=n-2, y=n-1 and z=n, the sum over all products is x*y*z + x*y + x*z + y*z + x + y + z = n^3 - n - 1 = a(n). - J. M. Bergot, Aug 25 2011

Crossrefs

Programs

  • Magma
    [n^3-n-1: n in [1..50]]; // Vincenzo Librandi, Aug 29 2011
  • Mathematica
    a = {}; Do[AppendTo[a, x^3 - x - 1], {x, 1, 100}]; a

Formula

For n > 1, a(n) = floor(n^6/(n^3+n+1)). - Gary Detlefs, Feb 10 2010
G.f.: x*(-1 + 9*x - 3*x^2 + x^3) / (x-1)^4. - R. J. Mathar, Aug 28 2011
a(-n) = -A061600(n). - Bruno Berselli, Aug 29 2011
E.g.f.: (-1 + 6*x + 6*x^2 + x^3)*exp(x) = -E(0) where E(k) = 1 - 6*x/(1 - x/(1 + x - x/(6 + x - 6/(1 - x^2*(k+1)/E(k+1) )))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 09 2013

A268457 T(n,k)=Number of length-n 0..k arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

2, 3, 4, 4, 9, 7, 5, 16, 25, 11, 6, 25, 61, 67, 16, 7, 36, 121, 229, 176, 22, 8, 49, 211, 581, 852, 456, 29, 9, 64, 337, 1231, 2776, 3146, 1169, 37, 10, 81, 505, 2311, 7160, 13204, 11536, 2971, 46, 11, 100, 721, 3977, 15816, 41526, 62535, 42032, 7496, 56, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..7....25.....61.....121......211.......337.......505........721........991
.11....67....229.....581.....1231......2311......3977.......6409.......9811
.16...176....852....2776.....7160.....15816.....31276......56912......97056
.22...456...3146...13204....41526....108032....245626.....504876.....959414
.29..1169..11536...62535...240170....736525...1926444....4474451....9476950
.37..2971..42032..294967..1385338...5012171..15089356...39616567...93543782
.46..7496.152254.1385969..7970326..34047931.118040270..350431909..922677334
.56.18796.548568.6488635.45742764.230889543.922247248.3096903363.9094484100

Examples

			Some solutions for n=6 k=4
..3....2....3....2....2....0....4....2....2....0....1....0....0....3....4....3
..0....2....1....2....4....0....1....1....2....4....4....2....3....2....3....3
..0....4....1....1....4....2....3....0....1....4....2....1....1....2....0....1
..3....0....4....2....3....2....1....0....2....4....4....4....3....1....0....0
..4....1....2....3....2....2....0....4....0....4....4....4....1....3....1....3
..0....1....3....4....3....1....4....0....2....0....1....1....1....2....4....2
		

Crossrefs

Column 1 is A000124.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A061600(n+1).

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: a(n) = 6*a(n-1) -13*a(n-2) +14*a(n-3) -10*a(n-4) +4*a(n-5) -a(n-6)
k=3: [order 15]
k=4: [order 28]
k=5: [order 51]
k=6: [order 89]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n + 1
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n + 1
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + n^2 + 2*n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 2*n^3 + 6*n - 4
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 5*n^4 - 7*n^3 + 18*n^2 - 5*n - 5 for n>1

A269064 At stage 1, start with a unit equilateral triangle. At each successive stage add 3*(n-1) new triangles around outside with vertex-to-vertex contacts. Sequence gives number of triangles at n-th stage.

Original entry on oeis.org

0, 1, 4, 10, 26, 48, 87, 135, 208, 293, 410, 542, 714, 904, 1141, 1399, 1712, 2049, 2448, 2874, 3370, 3896, 4499, 5135, 5856, 6613, 7462, 8350, 9338, 10368, 11505, 12687, 13984, 15329, 16796, 18314, 19962, 21664, 23503, 25399, 27440, 29541, 31794, 34110, 36586, 39128, 41837, 44615, 47568
Offset: 0

Views

Author

Luce ETIENNE, Feb 18 2016

Keywords

Comments

At stage n, we count (6*n^2-6*n+5-3*(2*n-1)*(-1)^n)/8 unit up-pointing triangles and 3*(2*n^2-2*n+1+(2*n-1)*(-1)^n)/8 unit down-pointing triangles.
At stage n, the total number of unit triangles is (3*n^2-3*n+2)/2 = A005448(n). It is the same total as for A064412. Note also that A064412 gives number of triangles in a geometrical structure according to expansion side-side (mode S-S).
The edges of several unit triangles can form larger size triangles, and these are also up- or down-pointing. The number of all such larger is given by :(14*n^3-9*n^2+11*n+18-(9*n^2+3*n+14)*(-1)^n-4*((-1)^((2*n+1-(-1)^n)/4)))/64 up-pointing triangles and (14*n^3-15*n^2+35*n-6+(9*n^2+21*n+2)*(-1)^n+4*((-1)^((2*n-1+(-1)^n)/4)))/64 down-pointing triangles.
As for A265282 we observe that starting with n = 4 we can see and count hexagonal and dodecagonal forms for example in a reticular system (incomplete with hexagonal holes) by opposition to a compact shape A064412.

Examples

			a(0)= 0, a(1) = 1, a(2) = 4, a(3) = 7+3 = 10, a(4) = 19 + 6 + 1 = 26, a(5) = 31 + 12 + 4 + 1 = 48.
		

Crossrefs

Programs

  • Magma
    [(14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n) div 4)-(-1)^((6*n-1+(-1)^n) div 4)))/32: n in [0..50]]; // Vincenzo Librandi, Feb 19 2016
    
  • Mathematica
    Table[(14 n^3 - 12 n^2 + 23 n + 6 + 3 (3 n - 2) (-1)^n + 2 ((-1)^((2*n - 1 + (-1)^n) / 4) - (-1)^((6 n - 1 + (-1)^n) / 4))) / 32, {n, 0, 45}] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    concat(0, Vec(x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6)/((1-x)^4*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Feb 24 2016

Formula

a(n) = (7*n^3-3*n^2+4*n)/2 for n even.
a(n) = (28*n^3+30*n^2+16*n+7+(-1)^n)/8 for n odd.
a(n) = (14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)-(-1)^((6*n-1+(-1)^n)/4)))/32.
G.f.: x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6) / ((1-x)^4*(1+x)^2*(1+x^2)). - Colin Barker, Feb 24 2016

A100698 Primes of the form k^3 - k + 1.

Original entry on oeis.org

7, 61, 211, 337, 991, 1321, 2731, 3361, 6841, 9241, 10627, 15601, 17551, 29761, 42841, 59281, 68881, 74047, 91081, 124951, 140557, 157411, 185137, 238267, 421801, 456457, 592621, 614041, 658417, 728911, 778597, 857281, 970201, 1030201, 1061107, 1190911, 1367521
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 09 2004

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..400] | IsPrime(a) where a is n^3 - n +1]; // Vincenzo Librandi, Nov 17 2010
  • Mathematica
    Select[Table[n^3-n+1,{n,0, 1500}],PrimeQ] (* Vincenzo Librandi, Jul 18 2012 *)

Formula

a(n) = A061600(A236477(n)). - Elmo R. Oliveira, Apr 19 2025

Extensions

Inaccurate comment removed by D. S. McNeil, Nov 17 2010

A193871 Square array T(n,k) = k^n - k + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 13, 1, 1, 31, 79, 61, 21, 1, 1, 63, 241, 253, 121, 31, 1, 1, 127, 727, 1021, 621, 211, 43, 1, 1, 255, 2185, 4093, 3121, 1291, 337, 57, 1, 1, 511, 6559, 16381, 15621, 7771, 2395, 505, 73, 1, 1, 1023, 19681, 65533, 78121, 46651, 16801, 4089, 721, 91, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 21 2011

Keywords

Comments

The columns give 1^n-0, 2^n-1, 3^n-2, 4^n-3, 5^n-4, etc.
The main diagonal gives A006091, which is a sequence related to the famous "coconuts" problem.

Examples

			Array begins:
  1,   1,    1,     1,     1,    1,    1,   1,   1,   1
  1,   3,    7,    13,    21,   31,   43,  57,  73
  1,   7,   25,    61,   121,  211,  337, 505
  1,  15,   79,   253,   621, 1291, 2395
  1,  31,  241,  1021,  3121, 7771
  1,  63,  727,  4093, 15621
  1, 127, 2185, 16381
  1, 255, 6559
  1, 511
  1
		

Crossrefs

Row 1: A000012. Rows 2,3: A002061, A061600 but both without repetitions.
Cf. A276135.

Programs

  • Mathematica
    Table[k^# - k + 1 &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Nov 16 2016 *)

A079505 The last number for which a determinant of base-n numbers is nonzero.

Original entry on oeis.org

14, 25, 61, 121, 211, 337, 505, 721, 991, 1321, 1717, 2185, 2731, 3361, 4081, 4897, 5815, 6841, 7981, 9241, 10627, 12145, 13801, 15601, 17551, 19657, 21925, 24361, 26971, 29761, 32737, 35905, 39271, 42841, 46621, 50617, 54835, 59281, 63961, 68881
Offset: 2

Views

Author

Carlos Alves, Jan 21 2003

Keywords

Comments

Suppose the number k written in base b requires N digits. We build A_k, a square N X N matrix with the digits of k, k-1,...,k-N+1 in base b. The number Det[A_k] is 0 for k greater than b^3-b+1 (except if b=2).
|Det[A_k]| is at most (b-1)^2. The last nonzero value is 1-b, which occurs for k = b^3-b+1 (cf. A061600) except for b=2, though I did not prove it.

Examples

			a(3)=25 because the determinant sequence in base 3 is 1, 2, 2, -1, -1, 4, -2, -2, -2, 2, 0, 1, -1, 0, 1, -1, 0, -4, 4, 0, 2, -2, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, .... and Det[A_k]=0 for k > 25.
		

Crossrefs

Cf. A061600.

Programs

  • GAP
    Concatenation([14], List([3..50], n -> n^3-n+1)); # G. C. Greubel, Jan 18 2019
  • Magma
    [14] cat [n^3-n+1: n in [3..50]]; // Vincenzo Librandi, Dec 01 2018
    
  • Maple
    seq(coeff(series(x^2*(7*x^4-29*x^3+45*x^2-31*x+14)/(x-1)^4,x,n+1), x, n), n = 2 .. 35); # Muniru A Asiru, Nov 30 2018
  • Mathematica
    Table[ls = {}; Do[nt = Length[IntegerDigits[k, b]]; Ak = Table[IntegerDigits[k - i, b, nt], {i, 0, nt - 1}]; AppendTo[ls, Det[Ak]], {k, 1, b^4}]; Position[ls, _?(#!=0&)][[ -1, 1]], {b, 2, 10}]
    CoefficientList[Series[(7x^4 -29x^3 +45x^2 -31x +14)/(x-1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 01 2018 *)
    LinearRecurrence[{4,-6,4,-1},{14,25,61,121,211},40] (* Harvey P. Dale, Feb 12 2023 *)
  • PARI
    vector(50, n, n++; if(n==2, 14, n^3-n+1)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    [14] + [n^3-n+1 for n in (3..50)] # G. C. Greubel, Jan 18 2019
    

Formula

a(n) = n^3 - n + 1 (except for n=2, a(2)=14).
From Chai Wah Wu, Nov 30 2018: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 6.
G.f.: x^2*(7*x^4 - 29*x^3 + 45*x^2 - 31*x + 14)/(x - 1)^4. (End)

Extensions

Edited by T. D. Noe, Jun 24 2009
Showing 1-6 of 6 results.