A126420 a(n) = n^3 - n - 1.
-1, 5, 23, 59, 119, 209, 335, 503, 719, 989, 1319, 1715, 2183, 2729, 3359, 4079, 4895, 5813, 6839, 7979, 9239, 10625, 12143, 13799, 15599, 17549, 19655, 21923, 24359, 26969, 29759, 32735, 35903, 39269, 42839, 46619, 50615, 54833, 59279, 63959, 68879, 74045, 79463
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n^3-n-1: n in [1..50]]; // Vincenzo Librandi, Aug 29 2011
-
Mathematica
a = {}; Do[AppendTo[a, x^3 - x - 1], {x, 1, 100}]; a
Formula
For n > 1, a(n) = floor(n^6/(n^3+n+1)). - Gary Detlefs, Feb 10 2010
G.f.: x*(-1 + 9*x - 3*x^2 + x^3) / (x-1)^4. - R. J. Mathar, Aug 28 2011
a(-n) = -A061600(n). - Bruno Berselli, Aug 29 2011
E.g.f.: (-1 + 6*x + 6*x^2 + x^3)*exp(x) = -E(0) where E(k) = 1 - 6*x/(1 - x/(1 + x - x/(6 + x - 6/(1 - x^2*(k+1)/E(k+1) )))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 09 2013
Comments