A061925 a(n) = ceiling(n^2/2) + 1.
1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926, 969, 1014, 1059, 1106, 1153, 1202, 1251, 1302, 1353, 1406
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
- Eric Weisstein's World of Mathematics, Bishop Graph.
- Eric Weisstein's World of Mathematics, Lower Matching Number.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Maple
seq(floor((n^2+3)/2),n=0..25); # Gary Detlefs, Feb 13 2010
-
Mathematica
Table[Ceiling[n^2/2]+1,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *) LinearRecurrence[{2,0,-2,1},{1,2,3,6},60] (* Harvey P. Dale, Jan 03 2024 *)
-
PARI
a(n) = { ceil(n^2/2) + 1 } \\ Harry J. Smith, Jul 29 2009
Formula
a(2*n) = a(2*n-1) + 2*n - 1 = 2*n^2 + 1 = A058331(n).
a(2*n+1) = a(2*n) + 2*n + 1 = 2*(n^2 + n + 1) = A051890(n+1).
a(n) = floor((n^2+3)/2). - Gary Detlefs, Feb 13 2010
From R. J. Mathar, Feb 19 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1-x^2+2*x^3)/((1+x) * (1-x)^3). (End)
a(n) = (2*n^2 - (-1)^n + 5)/4. - Bruno Berselli, Sep 29 2011
a(n) = A007590(n+1) - n + 1. - Wesley Ivan Hurt, Jul 15 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x))/2. - Stefano Spezia, May 07 2021
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 09 2007
Comments