cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007068 a(n) = a(n-1) + (3+(-1)^n)*a(n-2)/2.

Original entry on oeis.org

1, 3, 4, 10, 14, 34, 48, 116, 164, 396, 560, 1352, 1912, 4616, 6528, 15760, 22288, 53808, 76096, 183712, 259808, 627232, 887040, 2141504, 3028544, 7311552, 10340096, 24963200, 35303296, 85229696, 120532992, 290992384, 411525376, 993510144, 1405035520, 3392055808
Offset: 1

Views

Author

Keywords

Comments

First row of spectral array W(sqrt 2).
Row sums of the square of the matrix with general term binomial(floor(n/2),n-k). - Paul Barry, Feb 14 2005

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007068 n = a007068_list !! (n-1)
    a007068_list = 1 : 3 : zipWith (+)
       (tail a007068_list) (zipWith (*) a000034_list a007068_list)
    -- Reinhard Zumkeller, Jan 21 2012
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==3,a[n]==a[n-1]+(3+(-1)^n) a[n-2]/2},a[n],{n,40}] (* Harvey P. Dale, Nov 12 2012 *)

Formula

a(2n+1) = a(2n)+a(2n-1); a(2n) = a(2n-1)+2*a(2n-2); same recurrence (mod parity) as A001882. - Len Smiley, Feb 05 2001
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(floor(n/2), n-j)*C(floor(j/2), j-k). - Paul Barry, Feb 14 2005
a(n) = 4*a(n-2)-2*a(n-4). G.f.: -x*(1+x)*(2*x^2-2*x-1)/(1-4*x^2+2*x^4). a(2n+1)=A007070(n). a(2n)=A007052(n). [R. J. Mathar, Aug 17 2009]
a(n) = a(n-1) + a(n-2) * A000034(n-1). [Reinhard Zumkeller, Jan 21 2012]

Extensions

Better description and more terms from Olivier Gérard, Jun 05 2001

A062113 a(0)=1; a(1)=2; a(n) = a(n-1) + a(n-2)*(3 - (-1)^n)/2.

Original entry on oeis.org

1, 2, 3, 7, 10, 24, 34, 82, 116, 280, 396, 956, 1352, 3264, 4616, 11144, 15760, 38048, 53808, 129904, 183712, 443520, 627232, 1514272, 2141504, 5170048, 7311552, 17651648, 24963200, 60266496, 85229696, 205762688, 290992384, 702517760
Offset: 0

Views

Author

Olivier Gérard, Jun 05 2001

Keywords

Comments

A bistable recurrence.

Crossrefs

Programs

  • Haskell
    a062113 n = a062113_list !! n
    a062113_list = 1 : 2 : zipWith (+)
       (tail a062113_list) (zipWith (*) a000034_list a062113_list)
    -- Reinhard Zumkeller, Jan 21 2012
    
  • Magma
    I:=[1,2,3,7]; [n le 4 select I[n] else 4*Self(n-2) - 2*Self(n-4): n in [1..40]]; // G. C. Greubel, Oct 16 2018
  • Mathematica
    LinearRecurrence[{0,4,0,-2}, {1,2,3,7}, 40] (* G. C. Greubel, Oct 16 2018 *)
  • PARI
    { for (n=0, 200, if (n>1, a=a1 + a2*(3 - (-1)^n)/2; a2=a1; a1=a, if (n==0, a=a2=1, a=a1=2)); write("b062113.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009
    
  • PARI
    x='x+O('x^40); Vec((1+2*x-x^2-x^3)/(1-4*x^2+2*x^4)) \\ G. C. Greubel, Oct 16 2018
    

Formula

a(n) = a(n-1) + a(n-2) * A000034(n). - Reinhard Zumkeller, Jan 21 2012
From Colin Barker, Apr 20 2012: (Start)
a(n) = 4*a(n-2) - 2*a(n-4).
G.f.: (1+2*x-x^2-x^3)/(1-4*x^2+2*x^4). (End)

A384598 Expansion of (1-3*x^2) / (1-x-4*x^2+2*x^3+2*x^4).

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 38, 86, 186, 418, 914, 2042, 4490, 9994, 22042, 48954, 108154, 239898, 530522, 1175898, 2601882, 5764634, 12759322, 28262298, 62566554, 138567834, 306790810, 679404442, 1504298906, 3331199386, 7376004506, 16333395354, 36166416794
Offset: 0

Views

Author

Sean A. Irvine, Jun 04 2025

Keywords

Comments

Number of walks of length n on the following graph starting at vertex 0:
3
/|
0-1-2 |
\|
4.
Also, for n>=1, the number of walks of length n-1 starting from vertex 1 in the same graph.

Examples

			a(3)=4 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-2-4.
		

Crossrefs

Cf. A384599 (vertex 2), A384600 (vertex 3), A062112 (missing edge {3,4}), A382683 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-2|-2|4|1>>^n. <<1,1,2,4>>)[1,1]:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    CoefficientList[Series[(1 - 3*x^2)/(1 - x - 4*x^2 + 2*x^3 + 2*x^4), {x, 0, 32}], x] (* Michael De Vlieger, Jun 04 2025 *)

A384599 Expansion of (1+3*x+2*x^2) / (1-4*x^2-2*x^3).

Original entry on oeis.org

1, 3, 6, 14, 30, 68, 148, 332, 728, 1624, 3576, 7952, 17552, 38960, 86112, 190944, 422368, 936000, 2071360, 4588736, 10157440, 22497664, 49807232, 110305536, 244224256, 540836608, 1197508096, 2651794944, 5871705600, 13002195968, 28790412288, 63752195072
Offset: 0

Views

Author

Sean A. Irvine, Jun 04 2025

Keywords

Comments

Number of walks of length n on the following graph starting at vertex 2:
3
/|
0-1-2 |
\|
4.

Examples

			a(2)=6 because we have the walks 2-1-0, 2-1-2, 2-3-2, 2-3-4, 2-4-2, 2-4-3.
		

Crossrefs

Cf. A384598 (vertices 0 and 1), A384600 (vertex 3), A062112 (missing edge {3,4}), A382683 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <2|4|0>>^n. <<1,3,6>>)[1,1]:
    seq(a(n), n=0..31);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    CoefficientList[Series[(1 + 3*x + 2*x^2)/(1 - 4*x^2 - 2*x^3), {x, 0, 31}], x] (* Michael De Vlieger, Jun 04 2025 *)

A384600 Expansion of (1+x-x^2) / (1-x-4*x^2+2*x^3+2*x^4).

Original entry on oeis.org

1, 2, 5, 11, 25, 55, 123, 271, 603, 1331, 2955, 6531, 14483, 32035, 70995, 157107, 348051, 770419, 1706419, 3777779, 8366515, 18523955, 41021619, 90828851, 201134387, 445358643, 986195251, 2183703347, 4835498291, 10707203891, 23709399859, 52499812147
Offset: 0

Views

Author

Sean A. Irvine, Jun 04 2025

Keywords

Comments

Number of walks of length n on the following graph starting at vertex 3:
3
/|
0-1-2 |
\|
4.

Examples

			a(2)=5 because we have the walk 3-2-1, 3-2-3, 3-2-4, 3-4-2, 3-4-3.
		

Crossrefs

Cf. A384598 (vertices 0 and 1), A384599 (vertex 2), A062112 (missing edge {3,4}), A382683 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-2|-2|4|1>>^n. <<1,2,5,11>>)[1,1]:
    seq(a(n), n=0..31);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    CoefficientList[Series[(1 + x - x^2)/(1 - x - 4*x^2 + 2*x^3 + 2*x^4), {x, 0, 31}], x] (* Michael De Vlieger, Jun 04 2025 *)

A356639 Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)).

Original entry on oeis.org

1, 1, 3, 17, 155, 2677, 73327, 3578339, 329652351
Offset: 1

Views

Author

Thomas Scheuerle, Aug 19 2022

Keywords

Comments

This sequence can be calculated by a recursive algorithm:
Let B1 be an array of finite length, the "1" denotes that it is the first generation. Let B1' be the reversed version of B1. Let C be the element-wise product C = B1 * B1'. Then B2 is a concatenation of taking each element of B1 and add all divisors of the corresponding element in C. If we start with B1 = {1} then we get this sequence of arrays: B2 = {2}, B3 = {3, 4, 6}, ... . a(n) is the length of the array Bn. In short the length of Bn+1 and so a(n+1) is the sum over A000005(Bn * Bn').
The transform used in the definition of this sequence is its own inverse, so if c = S(b) then b = S(c). The eigensequence is 2^n = S(2^n).
There exist some transformation pairs of infinite sequences in the database:
A026549 <--> A038754; A100071 <--> A001405; A058295 <--> A------;
A111286 <--> A098011; A093968 <--> A205825; A166447 <--> A------;
A079352 <--> A------; A082458 <--> A------; A008233 <--> A264635;
A138278 <--> A------; A006501 <--> A264557; A336496 <--> A------;
A019464 <--> A------; A062112 <--> A------; A171647 <--> A359039;
A279312 <--> A------; A031923 <--> A------.
These transformation pairs are conjectured:
A137326 <--> A------; A066332 <--> A300902; A208147 <--> A308546;
A057895 <--> A------; A349080 <--> A------; A019442 <--> A------;
A349079 <--> A------.
("A------" means not yet in the database.)
Some sequences in the lists above may need offset adjustment to force a beginning with 1,2,... in the transformation.
If we allowed signed rational numbers, further interesting transformation pairs could be observed. For example, 1/n will transform into factorials with alternating sign. 2^(-n) transforms into ones with alternating sign and 1/A000045(n) into A000045 with alternating sign.

Examples

			a(4) = 17. The 17 transformation pairs of length 4 are:
  {1, 2, 3, 4}  = S({1, 2, 6, 24}).
  {1, 2, 3, 5}  = S({1, 2, 6, 15}).
  {1, 2, 3, 6}  = S({1, 2, 6, 12}).
  {1, 2, 3, 9}  = S({1, 2, 6, 9}).
  {1, 2, 3, 12} = S({1, 2, 6, 8}).
  {1, 2, 3, 21} = S({1, 2, 6, 7}).
  {1, 2, 4, 5}  = S({1, 2, 4, 20}).
  {1, 2, 4, 6}  = S({1, 2, 4, 12}).
  {1, 2, 4, 8}  = S({1, 2, 4, 8}).
  {1, 2, 4, 12} = S({1, 2, 4, 6}).
  {1, 2, 4, 20} = S({1, 2, 4, 5}).
  {1, 2, 6, 7}  = S({1, 2, 3, 21}).
  {1, 2, 6, 8}  = S({1, 2, 3, 12}).
  {1, 2, 6, 9}  = S({1, 2, 3, 9}).
  {1, 2, 6, 12} = S({1, 2, 3, 6}).
  {1, 2, 6, 15} = S({1, 2, 3, 5}).
  {1, 2, 6, 24} = S({1, 2, 3, 4}).
b(1) = 1 by definition, b(2) = 1+1 as 1 has only 1 as divisor.
a(3) = A000005(b(2)*b(2)) = 3.
The divisors of b(2) are 1,2,4. So b(3) can be b(2)+1, b(2)+2 and b(2)+4.
a(4) = A000005((b(2)+1)*(b(2)+4)) + A000005((b(2)+2)*(b(2)+2)) + A000005((b(2)+4)*(b(2)+1)) = 17.
		

Crossrefs

Showing 1-6 of 6 results.