A051846
Digits 1..n in strict descending order n..1 interpreted in base n+1.
Original entry on oeis.org
1, 7, 57, 586, 7465, 114381, 2054353, 42374116, 987654321, 25678050355, 736867805641, 23136292864686, 789018236134297, 29043982525261081, 1147797409030816545, 48471109094902544776, 2178347851919531492065, 103805969587115219182431
Offset: 1
a(1) = 1,
a(2) = 2*3 + 1 = 7,
a(3) = 3*(4^2) + 2*4 + 1 = 57,
a(4) = 4*(5^3) + 3*(5^2) + 2*5 + 1 = 586.
-
a(n) := proc(n) local i; add(i*((n+1)^(i-1)),i=1..n); end;
-
Array[Sum[i*(# + 1)^(i - 1), {i, #}] &, 18] (* Michael De Vlieger, Apr 04 2024 *)
-
makelist(((n+1)^(n+1)*(n-1) + 1)/n^2,n,1,20); /* Martin Ettl, Jan 25 2013 */
-
a(n)=((n+1)^(n+1)*(n-1)+1)/n^2
-
def a(n): return sum((i+1)*(n+1)**i for i in range(n))
print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Apr 10 2022
A068475
a(n) = Sum_{m=0..n} m*n^(m-1).
Original entry on oeis.org
0, 1, 5, 34, 313, 3711, 54121, 937924, 18831569, 429794605, 10987654321, 310989720966, 9652968253897, 326011399456939, 11901025061692313, 466937872906120456, 19594541482740368161, 875711370981239308953, 41524755927216069067489, 2082225625247428808306410
Offset: 0
Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
a(2) = Sum_{m = 1..2} m*2^(m-1) = 1 + 2*2 = 5.
-
a068475 n = sum $ zipWith (*) [1..n] $ iterate (* n) 1
-- Reinhard Zumkeller, Nov 22 2014
-
[0] cat [(&+[m*n^(m-1): m in [0..n]]): n in [1..30]]; // G. C. Greubel, Oct 13 2018
-
a := n->sum(m*n^(m-1),m=1..n);
-
Join[{0}, Table[Sum[m*n^(m-1), {m,0,n}], {n,1,30}]] (* G. C. Greubel, Oct 13 2018 *)
-
for(n=0,30, print1(if(n==0, 0, sum(m=0,n, m*n^(m-1))), ", ")) \\ G. C. Greubel, Oct 13 2018
A368526
a(n) = Sum_{k=1..n} k^2 * n^k.
Original entry on oeis.org
0, 1, 18, 282, 4740, 89355, 1896846, 45050852, 1186829064, 34391135205, 1087928669410, 37322190255966, 1380461544684300, 54772368958008975, 2320775754168090870, 104596636848116060040, 4996700995031905899536, 252208510175779038669321
Offset: 0
A368527
a(n) = Sum_{k=1..n} k^3 * n^k.
Original entry on oeis.org
0, 1, 34, 804, 18244, 434205, 11138766, 310151632, 9370253320, 306232628625, 10783859167810, 407523041660196, 16461877678462668, 708207095198943613, 32338800248010936694, 1562509380160144645440, 79657105206246202521616
Offset: 0
A368534
a(n) = Sum_{k=1..n} binomial(k+1,2) * n^(n-k).
Original entry on oeis.org
0, 1, 5, 24, 146, 1215, 13431, 186816, 3130436, 61291125, 1371742105, 34522712136, 964626945558, 29621465864627, 991330604373851, 35906022352657920, 1399219698628043016, 58367293868445147657, 2594796705962971336125, 122463905297217627859000
Offset: 0
-
Table[Sum[Binomial[k+1,2]n^(n-k),{k,n}],{n,0,20}] (* Harvey P. Dale, May 14 2025 *)
-
a(n) = sum(k=1, n, binomial(k+1, 2)*n^(n-k));
A189001
a(n) = Sum_{i=0..n} (i+1)*n^i.
Original entry on oeis.org
1, 3, 17, 142, 1593, 22461, 380713, 7526268, 169826513, 4303999495, 120987654321, 3734729768298, 125562274081225, 4566262891748481, 178581127445062553, 7473240118999870456, 333189190735802745633, 15766036084935301064139
Offset: 0
a(4) = 1593 because 1593 = 1+2*4+3*4^2+4*4^3+5*4^4.
Cf.
A189122: Sum_{i=0..n} (i+1)^2*n^i.
-
[&+[(k+1)*n^k: k in [0..n]]: n in [0..17]];
-
Join[{1, 3}, Table[(((n^2 - 2) n^(n + 1) + 1) / (n - 1)^2), {n, 2, 20}]] (* Vincenzo Librandi, Aug 19 2013 *)
A189122
a(n) = Sum_{i=0..n} (i+1)^2*n^i.
Original entry on oeis.org
1, 5, 45, 526, 7585, 130371, 2602285, 59142588, 1507308129, 42563286145, 1318792866941, 44477806954890, 1621859437812289, 63576780042697663, 2665971232476845805, 119073945060707737336, 5643402849491554535745
Offset: 0
a(4) = 7585 because 7585 = 1+2^2*4+3^2*4^2+4^2*4^3+5^2*4^4.
- "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno), Apr/May 1913 p. 99 (Problem 1277, case x=n).
-
[&+[(k+1)^2*n^k: k in [0..n]]: n in [0..17]];
-
Join[{1, 5}, Table[(n + 1) (4 n^(n + 1) - 3 n^(n + 2) - n^(n + 3) + n^(n + 4) -1) / (n - 1)^3, {n, 2, 20}]] (* Vincenzo Librandi, Aug 19 2013 *)
A068476
a(n) = Sum_{m=1..n} m*n^(m+(-1)^n).
Original entry on oeis.org
0, 1, 20, 34, 5008, 3711, 1948356, 937924, 1205220416, 429794605, 1098765432100, 310989720966, 1390027428561168, 326011399456939, 2332600912091693348, 466937872906120456, 5016202619581534249216, 875711370981239308953
Offset: 0
Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
a(2) = 2^(1+1)+2*2^(2+1) = 4+16 = 20.
-
[0] cat [(&+[m*n^(m+(-1)^n): m in [1..n]]): n in [1..30]]; // G. C. Greubel, Oct 13 2018
-
b := n->sum(m*n^(m+(-1)^n),m=1..n);
# Alternative:
f:= n -> n^(1+(-1)^n)*(n^n*(n^2-n-1)+1)/(n-1)^2:
f(0):= 0: f(1):= 1:
map(f, [$0..40]);
-
Table[Sum[m*n^(m+(-1)^n), {m,1,n}], {n,0,30}] (* G. C. Greubel, Oct 13 2018 *)
-
a(n) = sum(m=1, n, m*n^(m+(-1)^n)); \\ Michel Marcus, Nov 15 2017
A368536
a(n) = Sum_{k=1..n} binomial(k+1,2) * n^k.
Original entry on oeis.org
0, 1, 14, 192, 2996, 53955, 1110786, 25808160, 668740808, 19129643325, 598902606310, 20371538593296, 748148581865532, 29505258575474591, 1243695052515891626, 55800352470853933440, 2655106829377875895056, 133547801741230053460761
Offset: 0
A368537
a(n) = Sum_{k=1..n} binomial(k+2,3) * n^k.
Original entry on oeis.org
0, 1, 18, 309, 5828, 123230, 2913126, 76405854, 2205340936, 69523722855, 2377899710410, 87721897714891, 3472488925101516, 146833416409808492, 6605726035373765678, 315051237815279406540, 15879038919798268666896, 843348814519524716426685
Offset: 0
Showing 1-10 of 10 results.
Comments