A063727 a(n) = 2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
1, 2, 8, 24, 80, 256, 832, 2688, 8704, 28160, 91136, 294912, 954368, 3088384, 9994240, 32342016, 104660992, 338690048, 1096024064, 3546808320, 11477712896, 37142659072, 120196169728, 388962975744, 1258710630400
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 235.
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Harry J. Smith)
- J. Borowska and L. Lacinska, Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 2 for permanent of tridiagonal Toeplitz matrices a=2, b=2.
- Index entries for linear recurrences with constant coefficients, signature (2,4).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
GAP
List([0..25],n->2^n*Fibonacci(n+1)); # Muniru A Asiru, Nov 24 2018
-
Magma
[n le 2 select n else 2*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+4*a[n-2]od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 15 2008
-
Mathematica
a[n_]:=(MatrixPower[{{1,5},{1,1}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) CoefficientList[Series[1/(1 - 2 x - 4 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 31 2014 *) LinearRecurrence[{2, 4}, {1, 2}, 50] (* G. C. Greubel, Jan 07 2018 *)
-
PARI
s(n)=if(n<2,n+1,(s(n-1)+(s(n-2)*2))*2); for(n=0,32,print(s(n)))
-
PARI
{ for (n=0, 200, if (n>1, a=2*a1 + 4*a2; a2=a1; a1=a, if (n, a=a1=2, a=a2=1)); write("b063727.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 28 2009
-
SageMath
[lucas_number1(n,2,-4) for n in range(1, 26)] # Zerinvary Lajos, Apr 22 2009
Formula
a(n) = 2 * A087206(n+1).
From Vladeta Jovovic, Aug 16 2001: (Start)
a(n) = sqrt(5)/10*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1)).
G.f.: 1/(1-2*x-4*x^2). (End)
From Mario Catalani (mario.catalani(AT)unito.it), Jun 13 2003: (Start)
a(2*n) = 4*a(n-1)^2 + a(n)^2.
A084057(n+1)/a(n) converges to sqrt(5). (End)
E.g.f.: exp(x)*(cosh(sqrt(5)*x)+sinh(sqrt(5)*x)/sqrt(5)). - Paul Barry, Sep 20 2003
a(n) = 2^n*Fibonacci(n+1). - Vladeta Jovovic, Oct 25 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k+1)*5^k. - Paul Barry, Nov 15 2003
a(n) = U(n, i/2)*(-i*2)^n, i^2=-1. - Paul Barry, Nov 17 2003
Simplified formula: ((1+sqrt(5))^n-(1-sqrt(5))^n)/sqrt(20). Offset 1. a(3)=8. - Al Hakanson (hawkuu(AT)gmail.com), Jan 03 2009
First binomial transform of 1,1,5,5,25,25. - Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
a(n) = A(n-1,n) = A(n,n-1); A(i,j) = A(i-1,j) + A(i,j-1) - abs(A(i-1,j) - A(i,j-1)). - Carmine Suriano, May 13 2010
G.f.: G(0) where G(k) = 1 + 2*x*(1+2*x)/(1 - 2*x*(1+2*x)/(2*x*(1+2*x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
G.f.: G(0)/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+2 + 4*x )/( x*(4*k+4 + 4*x ) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
Sum_{n>=0} 1/a(n) = A269991. - Amiram Eldar, Feb 01 2021
Extensions
Better description from Jason Earls and Vladeta Jovovic, Aug 16 2001
Incorrect comment removed by Greg Dresden, Jun 02 2020
Comments