cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073128 Integer quotients arising in A063986.

Original entry on oeis.org

0, 1, 1, 5, 5, 49, 118, 121, 2406, 2698, 4182, 4946, 153627, 3087192, 8203485, 38394376, 487844934, 2822741576, 4140154385, 4397137572, 8583966231
Offset: 1

Views

Author

Labos Elemer, Jul 16 2002

Keywords

Examples

			n=15, A063986(15)=41846733, sum of first 41846733 cototients is s=343289046464505, a(15)=s/41846733. Only in knowledge of either the quotients or of partial sums of cototients is it possible to continue A063986 without recomputing previous terms!
		

Crossrefs

Formula

a(n)=Sum[cototient[j], j=1..A063986(n)]/A063986(n)

Extensions

Changed A063896 to A063986 and a(16)-a(21) from Donovan Johnson, May 11 2010

A073129 Partial sums of cototients arising in A063986.

Original entry on oeis.org

0, 4, 5, 120, 125, 12201, 70800, 74657, 29526432, 37132574, 89210424, 124777688, 120392102955, 48617257062792, 343289046464505, 7519663359716376, 1214022599940709056, 40644839476190305216, 87437200646372849005, 98628693371623948080, 375871306587181970568
Offset: 1

Views

Author

Labos Elemer, Jul 16 2002

Keywords

Examples

			n=15, a(15)=343289046464505, sum of first 41846733 cototients A063986(15)*A073128(15)=a(15) To continue A063986, A073128 or A073129 without recomputing previous terms, corresponding entries from 2 of above sequences is required.
		

Crossrefs

Formula

a(n)=Sum[cototient[j], j=1..A063986(n)]

Extensions

Changed A063896 to A063986 and a(16)-a(21) from Donovan Johnson, May 11 2010

A051953 Cototient(n) := n - phi(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, 1, 38, 35, 40, 17, 54, 1, 48, 27
Offset: 1

Views

Author

Labos Elemer, Dec 21 1999

Keywords

Comments

Unlike totients, cototient(n+1) = cototient(n) never holds -- except 2-phi(2) = 3 - phi(3) = 1 -- because cototient(n) is congruent to n modulo 2. - Labos Elemer, Aug 08 2001
Theorem (L. Redei): b^a(n) == b^n (mod n) for every integer b. - Thomas Ordowski and Robert Israel, Mar 11 2016
Let S be the sum of the cototients of the divisors of n (A001065). S < n iff n is deficient, S = n iff n is perfect, and S > n iff n is abundant. - Ivan N. Ianakiev, Oct 06 2023

Examples

			n = 12, phi(12) = 4 = |{1, 5, 7, 11}|, a(12) = 12 - phi(12) = 8, numbers not exceeding 12 and not coprime to 12: {2, 3, 4, 6, 8, 9, 10, 12}.
		

Crossrefs

Cf. A000010, A001065 (inverse Möbius transform), A005278, A001274, A083254, A098006, A049586, A051612, A053579, A054525, A062790 (Möbius transform), A063985 (partial sums), A063986, A290087.
Records: A065385, A065386.
Number of zeros in the n-th row of triangle A054521. - Omar E. Pol, May 13 2016
Cf. A063740 (number of k such that cototient(k) = n). - M. F. Hasler, Jan 11 2018

Programs

  • Haskell
    a051953 n = n - a000010 n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    with(numtheory); A051953 := n->n-phi(n);
  • Mathematica
    Table[n - EulerPhi[n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    A051953(n) = n - eulerphi(n); \\ Michael B. Porter, Jan 28 2010
    
  • Python
    from sympy.ntheory import totient
    print([i - totient(i) for i in range(1, 101)]) # Indranil Ghosh, Mar 17 2017

Formula

a(n) = n - A000010(n).
Equals Mobius transform (A054525) of A001065. - Gary W. Adamson, Jul 11 2008
a(A006881(n)) = sopf(A006881(n)) - 1; a(A000040(n)) = 1. - Wesley Ivan Hurt, May 18 2013
G.f.: sum(n>=1, A000010(n)*x^(2*n)/(1-x^n) ). - Mircea Merca, Feb 23 2014
From Ilya Gutkovskiy, Apr 13 2017: (Start)
G.f.: -Sum_{k>=2} mu(k)*x^k/(1 - x^k)^2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/zeta(s)). (End)
From Antti Karttunen, Sep 05 2018 & Apr 29 2022: (Start)
Dirichlet convolution square of A317846/A046644 gives this sequence + A063524.
a(n) = A003557(n) * A318305(n).
a(n) = A000010(n) - A083254(n).
a(n) = A318325(n) - A318326(n).
a(n) = Sum_{d|n} A062790(d) = Sum_{d|n, dA007431(d)*(A000005(n/d)-1).
a(n) = A048675(A318834(n)) = A276085(A353564(n)). [These follow from the formula below]
a(n) = Sum_{d|n, dA000010(d).
a(n) = A051612(n) - A001065(n).
(End)

A048290 Numbers m that divide Sum_{k=1..m} phi(k).

Original entry on oeis.org

1, 2, 5, 6, 16, 25, 36, 249, 617, 1296, 13763, 76268, 189074, 783665, 1102394, 3258466, 3808854, 7971034, 15748051, 27746990, 41846733, 153673168, 195853251, 302167272, 402296412, 732683468, 807656448, 844492262, 848152352, 1122039882, 2258200198, 2438160726
Offset: 1

Views

Author

Keywords

Comments

The odd terms of this sequence and A063986 are the same. - Jud McCranie, Jun 26 2005

Examples

			Euler sums are *1*, *2*, 4, 6, *10*, *12*, ..., *80*, ..., *510624*,... for n=1, 2, 3, 4, 5, 6, ..., 16, ...., 1296, ...
		

Crossrefs

Cf. A000010, A002088. See A063986 for n divides Sum_{k=1..n} k-phi(k).

Programs

  • Mathematica
    s = 0; Do[s = s + EulerPhi[n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10^8}]
  • PARI
    list(lim)=my(v=List(),s); for(k=1,lim, s+=eulerphi(k); if(s%k==0, listput(v, k))); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017

Formula

Sum_{k=1..m} phi(k) is about (3/Pi^2)*m^2 [cf. A002088, first formula].
Not obviously infinite; rough heuristics predict about 3/2 log(N) terms less than N, log(N) even ones and log(N)/2 odd ones.

Extensions

10 more terms computed by Dean Hickerson
One more term from Robert G. Wilson v, Sep 07 2001
More terms from Naohiro Nomoto, Mar 22 2002
5 more terms from Jud McCranie, Jun 21 2005

A064610 Places k where A064608(k) (partial sums of unitary tau) is divisible by k.

Original entry on oeis.org

1, 35, 37, 1015, 27417, 27421, 27449, 27453, 19774739, 530743781, 530743799, 530743807, 530743813
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

The corresponding quotients are 1, 3, 3, 5, 7, 7, 7, 7, 11, 13, 13, 13, 13, ...
a(14) > 7.5*10^10, if it exists. - Amiram Eldar, Jun 04 2021

Examples

			For n = 37, the sum A064608(37) = 1+2+2+2+2+4+2+...+4+4+4+2 = 111 = 3*37, so 37 is in the sequence.
		

Crossrefs

Cf. A064608.
Analogous "integer-mean" sequences for various arithmetical functions are A050226, A056650, A064605, A064606, A064607, A048290, A063986, A063971, A064911, A062982, A045345.

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = s[n - 1] + 2^PrimeNu[n]; Select[Range[30000], Divisible[s[#], #] &] (* Amiram Eldar, Jun 04 2021 *)

Formula

{n: A064608(n) == 0 (mod n)}.

Extensions

a(10)-a(13) from Donovan Johnson, Jul 20 2012
Showing 1-5 of 5 results.