cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069998 Decimal expansion of sqrt(Pi/2).

Original entry on oeis.org

1, 2, 5, 3, 3, 1, 4, 1, 3, 7, 3, 1, 5, 5, 0, 0, 2, 5, 1, 2, 0, 7, 8, 8, 2, 6, 4, 2, 4, 0, 5, 5, 2, 2, 6, 2, 6, 5, 0, 3, 4, 9, 3, 3, 7, 0, 3, 0, 4, 9, 6, 9, 1, 5, 8, 3, 1, 4, 9, 6, 1, 7, 8, 8, 1, 7, 1, 1, 4, 6, 8, 2, 7, 3, 0, 3, 9, 2, 0, 9, 8, 7, 4, 7, 3, 2, 9, 7, 9, 1, 9, 1, 8, 9, 0, 2, 8, 6, 3, 3, 0, 5, 8, 0, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, May 01 2002

Keywords

Comments

This constant, sqrt(Pi/2), appears in one of the formulations of the Birthday Problem: An asymptotic expansion of the expected value for the average number of people required to find a pair having the same birthday out of k possible birthdays is sqrt(Pi/2)*sqrt(k) + 2/3 + 1/12*sqrt(Pi/2)*sqrt(1/k) - 4/135*1/k + ... found by the Indian mathematician Srinivasa Ramanujan (1887-1920). - Martin Renner, Sep 14 2016

Examples

			Sqrt(Pi/2) = 1.253314137315500251207882642... - _Wesley Ivan Hurt_, Sep 22 2016
		

Crossrefs

Cf. A064619.

Programs

Formula

From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
Equals Integral_{x>=0} (sin(x)-x*cos(x))/x^(3/2) dx. - Amiram Eldar, May 08 2021
Equals Integral_{x=0..Pi/2} sin(cot(x)^2)*sec(x)^2 dx. See MIT link. - Kritsada Moomuang, Jun 23 2025

A072829 Greatest m such that Product_{k=1..n-1} (1 - k/m) <= 1/2.

Original entry on oeis.org

2, 5, 9, 16, 23, 32, 42, 54, 68, 82, 99, 116, 135, 156, 178, 201, 226, 252, 280, 309, 340, 372, 406, 441, 477, 515, 554, 595, 637, 681, 726, 772, 820, 869, 920, 973, 1026, 1081, 1138, 1196, 1256, 1316, 1379, 1443, 1508, 1575, 1643, 1712, 1783, 1856, 1930, 2005
Offset: 2

Views

Author

Lekraj Beedassy, Jul 22 2002

Keywords

Comments

Among n randomly selected dates over an interval of m days (or less), the odds are even (or better than even) for two or more of them to coincide.

Examples

			Thus a(7)=32 for instance implies that among 7 persons bearing the same astrological sign(extending over 30 days or so) the odds are trifle better than even for at least two of them further sharing a common birthday.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; While[ Product[1 - i/k, {i, 1, (n - 1)}] <= 1/2, k++ ]; Return[k - 1]); Table[ f[n], {n, 2, 53}]
  • Python
    from math import factorial, comb
    def A072829(n):
        f = factorial(n)
        def p(m): return comb(m,n)*f<<1
        kmin, kmax = n-1, n
        while p(kmax) <= kmax**n: kmax<<=1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if p(kmid) > kmid**n:
                kmax = kmid
            else:
                kmin = kmid
        return kmin # Chai Wah Wu, Jan 21 2025

Formula

Corresponds to the ultimate occurrence of n in A033810. For large n, m has magnitude n^2 / 2 * log(2).

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2002
More terms from David Terr, Jan 03 2005

A051008 Continued fraction expansion of sqrt(2*log(2)).

Original entry on oeis.org

1, 5, 1, 1, 1, 3, 27, 1, 1, 1, 1, 24, 1, 3, 1, 24, 1, 6, 1, 8, 1, 11, 1, 3, 1079, 1, 3, 1, 1, 6, 1, 3, 10, 167, 1, 5, 1, 1, 2, 4, 6, 2, 1, 3, 2, 1, 2, 2, 9, 4, 5, 1, 20, 1, 3, 1, 2, 1, 19, 12, 4, 2, 1, 2, 4, 46, 2, 3, 20, 2, 1, 1, 2, 1, 5, 1, 1, 1, 1, 1, 1, 2, 3, 2, 6, 1, 2, 1, 13, 12, 4, 2, 1, 2, 19, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2002

Keywords

Examples

			1.177410022515474691011569326... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Sep 20 2009
		

Crossrefs

Cf. A064619 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(150)); ContinuedFraction(Sqrt(2*Log(2))); // G. C. Greubel, Aug 16 2018
  • Mathematica
    ContinuedFraction[Sqrt[2Log[2]],100] (* Harvey P. Dale, Aug 10 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2*log(2))); for (n=1, 20000, write("b051008.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Sep 20 2009
    

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A071856 Factorial expansion of sqrt(2ln(2)) : sqrt(2ln(2)) = sum( n>=1, a(n)/n! ).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 5, 1, 1, 5, 5, 4, 8, 4, 9, 12, 10, 11, 11, 13, 4, 10, 2, 12, 22, 13, 8, 4, 2, 16, 22, 25, 30, 13, 12, 11, 12, 8, 11, 13, 30, 7, 34, 15, 9, 18, 41, 17, 38, 23, 21, 39, 4, 46, 45, 50, 8, 45, 57, 6, 5, 41, 62, 36, 64, 1, 26, 56, 5, 29, 13, 12, 10, 1, 55, 20, 9, 40, 36
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Comments

a(1)=1, then PARI program gives a(n) for n>1.

Crossrefs

Cf. A064619.

Programs

  • PARI
    for(n=2,200,c=sqrt(2*log(2)); print1(floor(n!*c)-n*floor((n-1)!*c),","))

A071857 Engel expansion of sqrt(2*log(2)).

Original entry on oeis.org

1, 6, 16, 32, 279, 726, 4141, 4368, 54482, 112572, 366613, 978019, 5342223, 41589964, 201780051, 353794663, 408307432, 463394050, 676353989, 866725306, 999357112, 3878963429, 4169753024, 8541140255, 23422387081, 26113359872, 940995107440, 1104573841707
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Comments

a(1)=1, then PARI program gives a(n) for n>1.

Crossrefs

Programs

  • PARI
    s= sqrt(2*log(2)); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );
Showing 1-5 of 5 results.