cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A068465 Decimal expansion of Gamma(3/4).

Original entry on oeis.org

1, 2, 2, 5, 4, 1, 6, 7, 0, 2, 4, 6, 5, 1, 7, 7, 6, 4, 5, 1, 2, 9, 0, 9, 8, 3, 0, 3, 3, 6, 2, 8, 9, 0, 5, 2, 6, 8, 5, 1, 2, 3, 9, 2, 4, 8, 1, 0, 8, 0, 7, 0, 6, 1, 1, 2, 3, 0, 1, 1, 8, 9, 3, 8, 2, 8, 9, 8, 2, 2, 8, 8, 8, 4, 2, 6, 7, 9, 8, 3, 5, 7, 2, 3, 7, 1, 7, 2, 3, 7, 6, 2, 1, 4, 9, 1, 5, 0, 6, 6, 5, 8, 2, 1, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			Gamma(3/4) = 1.225416702465177645129098303362890526851239248108070611...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:14 at page 414.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(105)); Gamma(3/4); // G. C. Greubel, Mar 11 2018
  • Maple
    evalf(GAMMA(3/4)) ; # R. J. Mathar, Jan 10 2013
  • Mathematica
    RealDigits[Gamma[3/4], 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
  • PARI
    default(realprecision, 100); gamma(3/4) \\ G. C. Greubel, Mar 11 2018
    

Formula

Gamma(3/4) * A068466 = sqrt(2)*Pi = A063448. - R. J. Mathar, Jun 18 2006
Equals Integral_{x>=0} x^(-1/4)*exp(-x) dx. - Vaclav Kotesovec, Nov 12 2020
Equals (Pi/2)^(1/4) * sqrt(AGM(1,sqrt(2))) = sqrt(A069998 * A053004). - Amiram Eldar, Jun 12 2021

A218792 Decimal expansion of Sum_{n = -oo..oo} e^(-2*n^2).

Original entry on oeis.org

1, 2, 7, 1, 3, 4, 1, 5, 2, 2, 1, 8, 9, 0, 1, 5, 2, 2, 5, 2, 2, 2, 3, 8, 2, 5, 7, 8, 7, 9, 0, 9, 3, 5, 6, 2, 4, 9, 7, 6, 8, 6, 4, 9, 8, 7, 7, 1, 7, 6, 2, 6, 7, 0, 1, 1, 6, 4, 4, 1, 0, 8, 0, 1, 6, 9, 7, 4, 7, 7, 5, 8, 5, 6, 6, 5, 5, 3, 0, 7, 5, 0, 6, 2, 3, 9, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 05 2012

Keywords

Examples

			1.2713415221890152252223825787909356249768649877176...
For comparison, sqrt(Pi/2) = 1.2533141373155002512078826424055226265034933703050...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[E^(-2*k^2), {k,-Infinity,Infinity}], 10, 200][[1]]
    RealDigits[EllipticTheta[3,0,1/E^2],10,200][[1]] (* Vaclav Kotesovec, Sep 22 2013 *)
  • PARI
    1 + 2*suminf(n=1, exp(-2*n^2)) \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    (eta(2*I/Pi))^5 / (eta(I/Pi)^2 * eta(4*I/Pi)^2) \\ Jianing Song, Oct 13 2021

Formula

Equals Jacobi theta_{3}(0,exp(-2)). - G. C. Greubel, Feb 01 2017
Equals eta(2*i/Pi)^5 / (eta(i/Pi)*eta(4*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021

A244067 Decimal expansion of the Purdom-Williams constant, a constant related to the Golomb-Dickman constant and to the asymptotic evaluation of the expectation of a random function longest cycle length.

Original entry on oeis.org

7, 8, 2, 4, 8, 1, 6, 0, 0, 9, 9, 1, 6, 5, 6, 6, 1, 5, 0, 1, 6, 2, 1, 5, 1, 8, 8, 0, 6, 2, 9, 1, 0, 2, 8, 6, 6, 4, 4, 3, 0, 2, 8, 2, 5, 6, 6, 9, 6, 2, 8, 5, 8, 2, 4, 4, 1, 3, 7, 9, 2, 0, 3, 1, 9, 1, 7, 8, 0, 7, 1, 0, 9, 3, 0, 4, 0, 7, 4, 7, 3, 9, 1, 6, 5, 6, 9, 8, 8, 5, 2, 7, 3, 1, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2014

Keywords

Examples

			0.78248160099165661501621518806291...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 288.

Crossrefs

Programs

  • Mathematica
    lambda = Integrate[Exp[LogIntegral[x]], {x, 0, 1}]; N[lambda*Sqrt[Pi/2], 99] // RealDigits // First

Formula

Equals sqrt(Pi/2)*Integral_{x=0..1} exp(li(x)) dx, where li is the logarithmic integral function.
Equals A069998 * A084945. - Amiram Eldar, Aug 25 2020

A217481 Decimal expansion of sqrt(2*Pi)/4.

Original entry on oeis.org

6, 2, 6, 6, 5, 7, 0, 6, 8, 6, 5, 7, 7, 5, 0, 1, 2, 5, 6, 0, 3, 9, 4, 1, 3, 2, 1, 2, 0, 2, 7, 6, 1, 3, 1, 3, 2, 5, 1, 7, 4, 6, 6, 8, 5, 1, 5, 2, 4, 8, 4, 5, 7, 9, 1, 5, 7, 4, 8, 0, 8, 9, 4, 0, 8, 5, 5, 7, 3, 4, 1, 3, 6, 5, 1, 9, 6, 0, 4, 9, 3, 7, 3, 6, 6, 4, 8, 9, 5, 9, 5, 9, 4, 5, 1, 4, 3, 1, 6, 5, 2, 9, 0, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Oct 04 2012

Keywords

Comments

Equals Integral_{x>=0} sin(x^2) dx.
The generalizations are Integral_{x>=0} exp(i*x^n) dx =
0.6266570686577501... + i*0.6266570686577501... for n=2,
0.7733429420779898... + i*0.4464897557846246... for n=3,
0.8374066967690864... + i*0.3468652110238094... for n=4,
0.8732303655178185... + i*0.2837297451053993... for n=5,
and
Gamma(1/n)*i^(1/n)/n in general, where i is the imaginary unit. - R. J. Mathar, Nov 14 2012
Mean of cycle length (and of tail length) in Pollard rho method for factoring n is sqrt(2*Pi)/4*sqrt(n). - Jean-François Alcover, May 27 2013
If m = (1/2) * sqrt(Pi/2), then the coordinates of the two asymptotic points of the Cornu spiral (also called clothoide) and whose Cartesian parametrization is: x = a * Integral_{0..t} cos(u^2) du and y = a * Integral_{0..t} sin(u^2) du are (a*m, a*m) and (-a*m, -a*m) (see the curve at the MathCurve link). - Bernard Schott, Mar 02 2020
Equals the limit as x approaches infinity of the Fresnel integrals Integral_{0..x} sin(t^2) dt and Integral_{0..x} cos(t^2) dt. - Bernard Schott, Mar 05 2020

Examples

			equals 0.62665706865775012560394132120276131... = A019727 / 4 = sqrt(A019675).
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, this sequence, A019706, A143149, A019710.

Programs

  • Magma
    Sqrt(2*Pi(RealField(100)))/4; // G. C. Greubel, Sep 30 2018
  • Maple
    evalf(sqrt(2*Pi))/4 ;
  • Mathematica
    First@ RealDigits[N[Sqrt[2 Pi]/4, 105]] (* Michael De Vlieger, Sep 24 2018 *)
  • Maxima
    fpprec : 100; ev(bfloat(sqrt(2*%pi)))/4; /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    sqrt(2*Pi)/4 \\ Altug Alkan, Sep 08 2018
    
  • Sage
    ((sqrt(2*pi))/4).n(digits=100) # Jani Melik, Oct 05 2012
    

Formula

From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
From Bernard Schott, Mar 02 2020: (Start)
Equals Integral_{x >= 0} cos(x^2) dx or Integral_{x >= 0} sin(x^2) dx.
Equals sqrt(Pi/8) or (1/2)*sqrt(Pi/2). (End)

A256358 Decimal expansion of log(sqrt(Pi/2)).

Original entry on oeis.org

2, 2, 5, 7, 9, 1, 3, 5, 2, 6, 4, 4, 7, 2, 7, 4, 3, 2, 3, 6, 3, 0, 9, 7, 6, 1, 4, 9, 4, 7, 4, 4, 1, 0, 7, 1, 7, 8, 5, 8, 9, 7, 3, 3, 9, 2, 7, 7, 5, 2, 8, 1, 5, 8, 6, 9, 6, 4, 7, 1, 5, 3, 0, 9, 8, 9, 3, 7, 2, 0, 7, 3, 9, 5, 7, 5, 6, 5, 6, 8, 2, 0, 8, 8, 8, 7, 9, 9, 7, 1, 6, 3, 9, 5, 3, 5, 5, 1, 0, 0, 8, 0, 0, 0, 4
Offset: 0

Views

Author

Jean-François Alcover, Mar 26 2015

Keywords

Comments

Equals the derivative of the Dirichlet eta function at x=0. - Stanislav Sykora, May 27 2015

Examples

			0.22579135264472743236309761494744107178589733927752815869647153...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Sqrt[Pi/2]], 10, 105] // First
    RealDigits[DirichletEta'[0], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    log(sqrt(Pi/2)) \\ G. C. Greubel, Jan 09 2017

Formula

Given the harmonic sum G(x) = Sum_{k>=1} (-1)^k*log(k)*exp(-k^2*x), lim_{x->0} G(x) = log(sqrt(Pi/2)).
Integral_{x=0..oo} G(x) dx = (Pi^2/12)*log(2) + zeta'(2)/2 = (Pi^2/12)*(EulerGamma + log(4*Pi) - 12*log(Glaisher)) = 0.1013165781635...
G'(0) = 7*zeta'(-2) = -7*zeta(3)/(4*Pi^2) = -0.2131391994...
Equals Integral_{-oo..+oo} -log(1/2 + i*z)/(exp(-Pi*z) + exp(Pi*z)) dz, where i is the imaginary unit. - Peter Luschny, Apr 08 2018
Equals Sum_{n>=0} Sum_{m>=1} (-1)^(m+n) * log(m+n)/(m+n) (Efthimiou, 2010). - Amiram Eldar, Apr 09 2022
Equals A094642/2. - R. J. Mathar, Jun 15 2023

A143149 Decimal expansion of 5*sqrt(2*Pi)/4.

Original entry on oeis.org

3, 1, 3, 3, 2, 8, 5, 3, 4, 3, 2, 8, 8, 7, 5, 0, 6, 2, 8, 0, 1, 9, 7, 0, 6, 6, 0, 6, 0, 1, 3, 8, 0, 6, 5, 6, 6, 2, 5, 8, 7, 3, 3, 4, 2, 5, 7, 6, 2, 4, 2, 2, 8, 9, 5, 7, 8, 7, 4, 0, 4, 4, 7, 0, 4, 2, 7, 8, 6, 7, 0, 6, 8, 2, 5, 9, 8, 0, 2, 4, 6, 8, 6, 8, 3, 2, 4, 4, 7, 9, 7, 9, 7, 2, 5, 7, 1, 5, 8, 2, 6, 4, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 27 2008

Keywords

Comments

Upper bound using Shannon entropy arising in randomly-projected hypercubes.

Examples

			3.13328534328875...
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, A217481, A019706, this sequence, A019710.
Cf. A143148 (lower bound).

Programs

  • Mathematica
    RealDigits[5*Sqrt[2*Pi]/4, 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)
  • PARI
    5*sqrt(2*Pi)/4 \\ Michel Marcus, Mar 06 2020

Formula

Equals 10*Integral_{x>=0} x*sin(x^4) dx or 10*Integral_{x>=0} x*cos(x^4) dx (Fresnel integrals).

Extensions

Edited and a(100) corrected by Georg Fischer, Jul 16 2021

A068141 Continued fraction for sqrt(Pi/2).

Original entry on oeis.org

1, 3, 1, 18, 9, 4, 1, 4, 3, 2, 1, 3, 1, 1, 2, 1, 5, 1, 2, 1, 1, 10, 66, 12, 111, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 12, 6, 1, 47, 7, 1, 3, 1, 4, 1, 1, 45, 6, 15, 2, 11, 3, 102, 12, 1, 33, 1, 1, 1, 44, 3, 46, 1, 3, 35, 1, 6, 4, 3, 12, 1, 5, 2, 1, 4, 1, 3, 3
Offset: 0

Views

Author

Benoit Cloitre, Mar 13 2002

Keywords

Crossrefs

Cf. A069998 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[Pi/2], 100] (* G. C. Greubel, Jan 12 2017 *)
  • PARI
    contfrac(sqrt(Pi/2)) \\ Michel Marcus, Nov 23 2013

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A303617 Decimal expansion of Sum_{k >= 0} 2^(2*k+1)/Product_{i = 0..k} (2*i+1).

Original entry on oeis.org

8, 8, 3, 9, 4, 3, 9, 2, 4, 0, 9, 1, 9, 0, 4, 9, 0, 9, 4, 5, 6, 6, 9, 8, 0, 2, 4, 4, 3, 6, 2, 0, 3, 5, 7, 4, 1, 7, 1, 0, 0, 2, 8, 4, 6, 3, 7, 8, 3, 0, 9, 2, 7, 9, 6, 0, 4, 1, 8, 6, 3, 3, 9, 4, 0, 1, 1, 3, 8, 1, 0, 7, 1, 4, 5, 3, 7, 8, 6, 1, 4, 5, 5, 8, 0, 9, 4, 2, 0, 9, 6, 7, 3
Offset: 1

Views

Author

Bruno Berselli, Apr 27 2018

Keywords

Examples

			8.83943924091904909456698024436203574171002846378309279604186339401138107...
2/1 + 2^3/(1*3) + 2^5/(1*3*5) + 2^7/(1*3*5*7) + 2^9/(1*3*5*7*9) + 2^11/(1*3*5*7*9*11) + 2^13/(1*3*5*7*9*11*13) + ...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^2 Sqrt[Pi/2] Erf[Sqrt[2]], 10, 100][[1]]
  • PARI
    suminf(k=0, 2^(2*k+1)/prod(i=0, k, (2*i+1))) \\ Michel Marcus, Apr 27 2018

Formula

Equals e^2*sqrt(Pi/2)*erf(sqrt(2)) = A072334*A069998*A110894.

A387213 Decimal expansion of Integral_{x>=0} sin(x) * sin(x^2) dx.

Original entry on oeis.org

4, 9, 1, 6, 9, 9, 6, 7, 7, 6, 9, 3, 8, 2, 1, 1, 1, 7, 7, 1, 6, 5, 4, 6, 2, 5, 4, 1, 6, 8, 9, 0, 8, 1, 0, 0, 2, 2, 1, 5, 1, 0, 2, 7, 1, 2, 6, 8, 7, 5, 5, 0, 7, 7, 2, 5, 5, 9, 0, 4, 8, 1, 7, 9, 1, 4, 7, 4, 5, 0, 7, 2, 2, 3, 7, 5, 6, 2, 9, 6, 3, 8, 1, 0, 1, 9, 1, 1, 8, 9, 9, 8, 7, 5, 7, 6, 4, 6, 6, 2, 9, 0, 2, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Aug 22 2025

Keywords

Examples

			0.49169967769382111771654625416890810022151027126875...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Integrate[Sin[x]*Sin[x^2], {x, 0, Infinity}], 10, 120][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/2] * (Cos[1/4] * FresnelC[1/Sqrt[2*Pi]] + Sin[1/4] * FresnelS[1/Sqrt[2*Pi]]), 10, 120][[1]]

Formula

Equals sqrt(Pi/2) * (cos(1/4) * FresnelC(1/sqrt(2*Pi)) + sin(1/4) * FresnelS(1/sqrt(2*Pi))), where FresnelC(x) and FresnelS(x) are the Fresnel integrals C(x) and S(x), respectively.
Equals Integral_{x=0..1/2} cos(x^2 - 1/4) dx.
Showing 1-9 of 9 results.