A064753
a(n) = n*7^n - 1.
Original entry on oeis.org
6, 97, 1028, 9603, 84034, 705893, 5764800, 46118407, 363182462, 2824752489, 21750594172, 166095446411, 1259557135290, 9495123019885, 71213422649144, 531726889113615, 3954718737782518, 29311444762388081, 216579008522089716, 1595845325952240019, 11729463145748964146
Offset: 1
For a(n)=n*k^n-1 cf. -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6), this sequence (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*7^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 7; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n 7^n-1,{n,20}] (* or *) LinearRecurrence[{15,-63,49},{6,97,1028},20] (* Harvey P. Dale, Feb 12 2022 *)
A064756
a(n) = n*10^n - 1.
Original entry on oeis.org
9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Index entries for linear recurrences with constant coefficients, signature (21,-120,100).
Cf. for a(n) = n*k^n - 1: -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9), this sequence (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)
A064757
a(n) = n*11^n - 1.
Original entry on oeis.org
10, 241, 3992, 58563, 805254, 10629365, 136410196, 1714871047, 21221529218, 259374246009, 3138428376720, 37661140520651, 448795257871102, 5316497670165373, 62658722541234764, 735195677817154575, 8592599484487994106, 100078511642860166657, 1162022718519876379528
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10), this sequence (k=11),
A064758 (k=12).
-
[n*11^n - 1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 11; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n*11^n-1,{n,20}] (* Harvey P. Dale, May 12 2019 *)
A064758
a(n) = n*12^n - 1.
Original entry on oeis.org
11, 287, 5183, 82943, 1244159, 17915903, 250822655, 3439853567, 46438023167, 619173642239, 8173092077567, 106993205379071, 1390911669927935, 17974858503684095, 231105323618795519, 2958148142320582655, 37716388814587428863, 479219999055934390271, 6070119988041835610111, 76675199848949502443519
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11), this sequence (k=12).
A100690
a(n) = p * 5^p - 1 where p=prime(n).
Original entry on oeis.org
49, 374, 15624, 546874, 537109374, 15869140624, 12969970703124, 362396240234374, 274181365966796874, 5401670932769775390624, 144354999065399169921874, 2692104317247867584228515624
Offset: 1
-
[NthPrime(n) * 5^(NthPrime(n)) - 1: n in [1..20]]; // Vincenzo Librandi, Aug 27 2015
-
Do[Print[Prime[n]*5^(Prime[n]) - 1], {n, 1, 20}] (* Stefan Steinerberger, Feb 15 2006 *)
#*5^#-1&/@Prime[Range[20]] (* Harvey P. Dale, Jun 12 2016 *)
-
main(m)=forprime(p=2,m,print1(p * 5^p - 1,", ")) \\ Anders Hellström, Aug 27 2015
A242336
Numbers k such that k*5^k-1 is semiprime.
Original entry on oeis.org
1, 2, 6, 12, 15, 19, 20, 26, 50, 55, 66, 68, 96, 99, 150, 166, 228, 459
Offset: 1
Cf. similar sequences listed in
A242273.
-
IsSemiprime:=func; [n: n in [1..400] | IsSemiprime(s) where s is n*5^n-1];
-
select(t -> (numtheory:-bigomega(t*5^t-1)=2), [$1..400]); # Robert Israel, Aug 18 2015
-
Select[Range[400], PrimeOmega[# 5^# - 1]==2&]
Showing 1-6 of 6 results.
Comments