cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088580 a(n) = 1 + sigma(n).

Original entry on oeis.org

2, 4, 5, 8, 7, 13, 9, 16, 14, 19, 13, 29, 15, 25, 25, 32, 19, 40, 21, 43, 33, 37, 25, 61, 32, 43, 41, 57, 31, 73, 33, 64, 49, 55, 49, 92, 39, 61, 57, 91, 43, 97, 45, 85, 79, 73, 49, 125, 58, 94, 73, 99, 55, 121, 73, 121, 81, 91, 61, 169, 63, 97, 105, 128, 85, 145, 69, 127, 97
Offset: 1

Views

Author

James East, Nov 20 2003

Keywords

Comments

Number of reflection subgroups of the (dihedral) Coxeter group of type I_2(n).

Examples

			a(2)=4. If W=<s, t|s^2=t^2=1, st=ts> then the reflection subgroups are {1}, <s>, <t>, <s, t>.
		

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A065512 (indices of primes in this sequence), A258430 (corresponding primes).

Programs

  • Haskell
    a088580 = (+ 1) . a000203  -- Reinhard Zumkeller, Dec 20 2014
    
  • Magma
    [1+SumOfDivisors(n): n in [1..100]]; // Vincenzo Librandi, May 30 2015
  • Maple
    map(1+numtheory:-sigma, [$1..1000]); # Robert Israel, May 29 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n], {n, 100}] (* Robert Price, May 29 2015 *)

Formula

a(n) = 1 + A000203(n).
G.f.: x/(1 - x) + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017

A039698 Numbers k such that phi(k) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 79, 82, 83, 86, 88, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103
Offset: 1

Views

Author

Keywords

Comments

Positive integers k for which values of A039649(k) are primes. - Vladimir Shevelev, May 10 2008
For every prime p, the numbers p and 2p are terms of this sequence. - Vladimir Shevelev, May 10 2008
Union of A000040 and A066071. - Ray Chandler, May 26 2008

Examples

			phi(10)+1 = 4+1 = 5, a prime number, so 10 is a term.
		

Crossrefs

Cf. A039689 (complement), A296079 (characteristic function).

Programs

  • Magma
    [n: n in [1..200] | IsPrime(EulerPhi(n)+1)]; // Vincenzo Librandi, Aug 13 2013
  • Mathematica
    Select[Range[300], PrimeQ[EulerPhi[#] + 1]&] (* Vincenzo Librandi, Aug 13 2013 *)

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar

A248792 Numbers n such that sigma(n) - 1 is a prime p.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 65, 67, 71, 73, 74, 76, 78, 79, 83, 84, 85, 86, 88, 89, 90, 92, 93, 96, 97, 101, 103, 105, 107, 109
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2014

Keywords

Comments

Union of primes (A000040) and terms of A066073 (composites).
Numbers n such that A039653(n) is prime.
Corresponding values of primes p are in A248793.

Examples

			6 is in sequence because sigma(6) - 1 = 12 - 1 = 11 (prime).
		

Crossrefs

Cf. A000203 (sum of divisors), A000040 (primes).
Cf. A039653 (sigma(n)-1), A066073 (subsequence of composites), A248793.
Cf. A065512 (numbers n such that sigma(n) + 1 is prime).

Programs

  • Magma
    [n: n in[1..1000] | IsPrime(SumOfDivisors(n) - 1)];
    
  • Maple
    with(numtheory): A248792:=n->`if`(isprime(sigma(n)-1), n, NULL): seq(A248792(n), n=1..200); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Range[110], PrimeQ[DivisorSigma[1, #] - 1] &] (* Vincenzo Librandi, Nov 02 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(sigma(n)-1),print1(n,", "))) \\ Derek Orr, Nov 01 2014

A258430 Primes in A088580.

Original entry on oeis.org

2, 5, 7, 13, 19, 13, 29, 19, 43, 37, 61, 43, 41, 31, 73, 61, 43, 97, 79, 73, 73, 73, 61, 97, 127, 97, 73, 97, 127, 109, 181, 113, 157, 103, 211, 193, 163, 109, 281, 241, 211, 181, 157, 313, 337, 241, 271, 139, 337, 193, 181, 223, 229, 151, 373, 193, 241, 379
Offset: 1

Views

Author

Robert Price, May 29 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A088580.

Crossrefs

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 1 + SumOfDivisors(n)]; // Vincenzo Librandi, May 30 2015
    
  • Maple
    with(numtheory): A258430:=n->`if`(isprime(1+sigma(n)), 1+sigma(n), NULL): seq(A258430(n), n=1..300); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Table[1 + DivisorSigma[1, n], {n, 10000}], PrimeQ]
  • PARI
    select(x->isprime(x), vector(200, n, 1+sigma(n))) \\ Michel Marcus, Jun 04 2015

Formula

a(n) = A088580(A065512(n)). - Michel Marcus, Jun 04 2015

A296212 a(n) = 1 if sigma(n) + 1 is prime, 0 otherwise.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

Characteristic function of A065512, numbers n such that sigma(n) + 1 is prime.

Crossrefs

Programs

Formula

a(n) = A010051(1+A000203(n)) = A010051(A088580(n)).

A259973 Numbers n such that sigma(n) + product of divisors of n is prime.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 23, 27, 29, 32, 41, 50, 53, 57, 83, 85, 89, 111, 113, 128, 131, 161, 173, 179, 191, 215, 233, 237, 239, 245, 251, 265, 275, 281, 293, 319, 355, 359, 365, 391, 413, 419, 431, 437, 443, 453, 481, 485, 491, 493, 505, 509, 511, 535, 589, 593, 603
Offset: 1

Views

Author

K. D. Bajpai, Jul 15 2015

Keywords

Comments

If p is prime, then (sigma(p) + product of divisors of p) = 2*p+1. So the subsequence of primes gives the Sophie Germain primes: A005384. - Michel Marcus, Jul 16 2015

Examples

			a(5) = 8; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79, which is prime.
a(8) = 27; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769, which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..1000] | IsPrime(&*Divisors(n) + SumOfDivisors(n))];
    
  • Mathematica
    Select[Range[2000], PrimeQ[DivisorSigma[1, #] + Times@@Divisors[#]] &]
  • PARI
    for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1,#d,d[i]); if(isprime(k),print1(n,", ")));

A260108 Primes of the form sigma(k) + product of divisors of k.

Original entry on oeis.org

2, 5, 7, 11, 79, 23, 47, 769, 59, 32831, 83, 125093, 107, 3329, 167, 7333, 179, 12473, 227, 268435711, 263, 26113, 347, 359, 383, 46489, 467, 56489, 479, 14706467, 503, 70549, 20797247, 563, 587, 102121, 126457, 719, 133669, 153313, 171049, 839, 863, 191449, 887
Offset: 1

Views

Author

K. D. Bajpai, Jul 16 2015

Keywords

Comments

Alternatively: Primes arising in A259973.

Examples

			a(5) = 79; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79 which is prime.
a(8) = 769; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769 which is prime.
		

Crossrefs

Programs

  • Magma
    [k: n in[1..1000] | IsPrime(k) where k is (&*Divisors(n) + SumOfDivisors(n))];
  • Maple
    with(numtheory): A260108:= n-> (sigma(n) + convert( divisors(n), `*`)): select(isprime, [seq((A260108 (n), n=1..800))]);
  • Mathematica
    Select[Table[DivisorSigma[1, n] + Times @@ Divisors[n], {n, 1, 1000}], PrimeQ]
  • PARI
    for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1, #d, d[i]); if( isprime(k) , print1(k, ", ")));
    
  • PARI
    A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
    list(lim)=v=List([2]); forprime(p=2,(lim-1)\2, if(isprime(2*p+1), listput(v,2*p+1))); forprime(p=2,sqrtnint(lim\1,3), my(t=p^3+p^2+p+1); if(t>lim,break); if(isprime(t), listput(v,t))); forcomposite(n=4,sqrtint(lim\1), my(t=A007955(n)+sigma(n)); if(t<=lim && isprime(t), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 17 2015
    
Showing 1-7 of 7 results.