cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065767 Intersection of A065764 and A065765: n such that x and y exist with sigma[x^2] = n = sigma[2*(y^2)].

Original entry on oeis.org

399, 5187, 12369, 34671, 48279, 73017, 80199, 122493, 152019, 160797, 220647, 259749, 311619, 347529, 396207, 436107, 561393, 687477, 755307, 900543, 949221, 1042587, 1074801, 1142337, 1412859, 1496649, 1509417, 1592409, 1818243
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Examples

			n = 399 = sigma[14^2] = sigma[2*(11^2)] = 1+2+4+7+14+28+49+98+196 = 1+2+11+22+121+242; also sigma[42.42] = sigma[2.33.33] = sigma[1764] = sigma[2378] = 5187.
		

Crossrefs

Programs

  • Mathematica
    Intersection[Table[DivisorSigma[1, w^2], {w, 1, 10000}], Table[DivisorSigma[1, 2*(w^2)], {w, 1, 10000}]]

A065764 Sum of divisors of square numbers.

Original entry on oeis.org

1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Unlike A065765, the sums of divisors of squares give remainders r=1,3,5 modulo 6: sigma(4)==1, sigma(49)==3, sigma(2401)==5 (mod 6). See also A097022.
a(n) is also the number of ordered pairs of positive integers whose LCM is n, (see LeVeque). - Enrique Pérez Herrero, Aug 26 2013
Main diagonal of A319526. - Omar E. Pol, Sep 25 2018
Subsequence of primes is A023195 \ {3}; also, 31 is the only known prime to be twice in the data because 31 = sigma(16) = sigma(25) (see A119598 and Goormaghtigh conjecture link). - Bernard Schott, Jan 17 2021

References

  • W. J. LeVeque, Fundamentals of Number Theory, pp. 125 Problem 4, Dover NY 1996.

Crossrefs

Programs

  • GAP
    a:=List([1..50],n->Sigma(n^2));; Print(a); # Muniru A Asiru, Jan 01 2019
    
  • Magma
    [SumOfDivisors(n^2): n in [1..48]]; // Bruno Berselli, Apr 12 2011
    
  • Maple
    with(numtheory): [sigma(n^2)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[Plus@@Divisors[n^2], {n, 48}] (* Alonso del Arte, Feb 24 2012 *)
    f[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • MuPAD
    numlib::sigma(n^2)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n) = sigma(n^2); \\ Harry J. Smith, Oct 30 2009
    
  • Python
    from math import prod
    from sympy import factorint
    def A065764(n): return prod((p**((e<<1)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
  • Sage
    [sigma(n^2,1)for n in range(1,49)] # Zerinvary Lajos, Jun 13 2009
    

Formula

a(n) = sigma(n^2) = A000203(A000290(n)).
Multiplicative with a(p^e) = (p^(2*e+1)-1)/(p-1). - Vladeta Jovovic, Dec 01 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/zeta(2*s-2), inverse Mobius transform of A000082. - R. J. Mathar, Mar 06 2011
Dirichlet convolution of A001157 by the absolute terms of A055615. Also the Dirichlet convolution of A048250 by A000290. - R. J. Mathar, Apr 12 2011
a(n) = Sum_{d|n} d*Psi(d), where Psi is A001615. - Enrique Pérez Herrero, Feb 25 2012
a(n) >= (n+1) * sigma(n) - n, where sigma is A000203, equality holds if n is in A000961. - Enrique Pérez Herrero, Apr 21 2012
Sum_{k=1..n} a(k) ~ 5*Zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = 1.3947708738535614499846243600124612760835313454790187655653356563282177118... - Vaclav Kotesovec, Sep 20 2020

A065766 Sum of divisors of twice a square number, divided by three.

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 121, 155, 133, 273, 183, 285, 403, 341, 307, 605, 381, 651, 741, 665, 553, 1105, 781, 915, 1093, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2541, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 3751, 2765, 2257, 4433, 2801
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Crossrefs

Programs

  • GAP
    List([1..50],n->Sigma(2*n^2))/3; # Muniru A Asiru, Dec 07 2018
    
  • Magma
    [SumOfDivisors(2*n^2)/3: n in [1..60]]; // Vincenzo Librandi, Dec 07 2018
    
  • Maple
    with(numtheory): [sigma(2*n^2)/3$n=1..50]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Array[DivisorSigma[1, 2 #^2]/3 &, 49] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n) = { sigma(2*n^2)/3 } \\ Harry J. Smith, Oct 30 2009
    
  • Python
    from sympy import divisor_sigma
    for n in range(1,50): print(divisor_sigma(2*n**2,1)/3) # Stefano Spezia, Dec 07 2018

Formula

Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(2*e+1)-1)/(p-1) for an odd prime p. - Vladeta Jovovic, Dec 01 2001
a(n) = sigma(2*n^2)/3 = A000203(2*A000290(n))/3 = A065765(n)/3.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.487175... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/(zeta(2*s-2)*(1+2/2^s)). - Amiram Eldar, Feb 12 2023

A097022 a(n) = (sigma(2n^2)-3)/6.

Original entry on oeis.org

0, 2, 6, 10, 15, 32, 28, 42, 60, 77, 66, 136, 91, 142, 201, 170, 153, 302, 190, 325, 370, 332, 276, 552, 390, 457, 546, 598, 435, 1007, 496, 682, 864, 767, 883, 1270, 703, 952, 1189, 1317, 861, 1852, 946, 1396, 1875, 1382, 1128, 2216, 1400, 1952, 1995, 1921
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[1,2n^2]-3)/6,{n,60}] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = (sigma(2*n^2) - 3)/6; \\ Michel Marcus, Dec 20 2013

Formula

a(n) = (A065765(n)-3)/6 = A000203(A001105(n) - 3)/6.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.243587... . - Amiram Eldar, Oct 28 2022

A081334 a(n) = sigma(2*n^2) modulo 4.

Original entry on oeis.org

3, 3, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3, 3, 3, 3, 3, 3, 1, 3, 1, 3, 3, 1, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 3, 3, 3, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[DivisorSigma[1, 2*n^2], 4]; Array[a, 100] (* Amiram Eldar, May 03 2025 *)
  • PARI
    a(n) = sigma(2*n^2) % 4; \\ Amiram Eldar, May 03 2025

Formula

a(n) = A010873(A065765(n)). - Amiram Eldar, May 03 2025
Showing 1-5 of 5 results.